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Abstract

Distributional semantic models provide vector representa-
tions for words by gathering co-occurrence frequencies from
corpora of text. Compositional distributional models extend
these representations from words to phrases and sentences.
In categorical compositional distributional semantics these
representations are built in such a manner that meanings
of phrases and sentences are functions of their grammatical
structure and the meanings of the words therein. These mod-
els have been applied to reasoning about phrase and sentence
level similarity. In this paper, we argue for and prove that
these models can also be used to reason about phrase and sen-
tence level entailment. We provide preliminary experimental
results on a toy entailment dataset.

The distributional hypothesis (Firth 1957) provides a
model in which meanings of words are represented by
vectors. These vectors are built from frequencies of co-
occurrences of words within contexts. Compositional dis-
tributional models (Mitchell and Lapata 2010) extend these
vector representations from words to phrases/sentences.
They work alongside the principle of compositionality, em-
ploying the fact that the meaning of a string of words is a
function of the meanings of the words therein.

The vectorial word and phrase/sentence representations
have been applied to similarity-based language tasks such
as disambiguation and semantic similarity (Schütze 1998;
Turney 2006). In order to apply the distributional represen-
tations to entailment tasks, distributional semanticists adhere
to a distributional inclusion hypothesis: if word v entails
word w, then the contexts of word v are included in the con-
texts of word w. This means that whenever word v is used,
word w can be used retaining a valid meaning. Whereas
there has been an extensive amount of work on this hypothe-
sis at the word level, e.g. see (Dagan, Lee, and Pereira 1999;
Weeds, Weir, and McCarthy 2004; Kotlerman et al. 2010),
not much has been done when it comes to phrases/sentences.
The work on entailment between quantified noun phrases
(Baroni et al. 2012) is an exception, but it does not take into
account composition. Compositionality is what is needed for
a modular approach to the textual entailment challenge (Da-
gan, Glickman, and Magnini 2006), where entailment is to
be decided for complex sentences of language.

∗Author order is alphabetical.

Categorical compositional distributional semantics
(CCDS) is a compositional distributional model where
vectorial meanings of phrases/sentences are built from the
vectors of the words therein and grammatical structures of
the phrases/sentences (Coecke, Sadrzadeh, and Clark 2010).
These models offer a general mathematical setting where
the meaning of any phrase/sentence of language can in
principle be assigned a vectorial representation. Fragments
of them have been instantiated to concrete data and have
been applied to word and phrase/sentence similarity-based
tasks, outperforming the models where grammar was not
taken into account (Grefenstette and Sadrzadeh 2011;
Kartsaklis and Sadrzadeh 2013).

In this paper we show how CCDS can be used to rea-
son about entailment in a compositional fashion. In par-
ticular, we prove how the general compositional procedure
of this model extends the entailment relation from words
to strings of words whose grammatical structure is ob-
tained from their syntactic parses. Previous work on word
level entailment shows how entropy-based notions such
as KL-divergence can be used to formalise the distribu-
tional inclusion hypothesis (Dagan, Lee, and Pereira 1999;
Herbelot and Ganesalingam 2013). In the current paper we
prove that in CCDS this notion soundly extends from word
vectors to sentence vectors and provides a notion of sentence
entailment similar to that of Natural Logic (MacCartney and
Manning 2007).

In the presence of correlations between contexts, the no-
tion of KL-divergence naturally lifts from vectors to den-
sity matrices via von Neumann entropy. The results of this
paper build on the developments of (Balkır 2014; Balkır,
Sadrzadeh, and Coecke 2015); we generalise the instantia-
tions of CCDS from vectors to density matrices and argue
that the notion of relative entropy on density matrices gives
rise to a richer notion of word and sentence level entail-
ment. Density matrices have been previously used in compo-
sitional distributional semantics to represent parsing infor-
mation (Blacoe, Kashefi, and Lapata 2013) and ambiguity
of meaning (Piedeleu et al. 2015).

We conclude by providing a small scale experiment on
data obtained from British National Corpus (BNC) applied
to a toy short-sentence entailment task. This involves im-
plementing a concrete way of building vectors and density
matrices for words and composing them to obtain sentences.



Categorical Compositional Distributional
Semantics (CCDS)

These models rely on the theory of compact closed cate-
gories. For general definitions of these categories see (Co-
ecke, Sadrzadeh, and Clark 2010). In its most abstract form,
a CCDS is denoted by

(CSyn, CSem, F : CSyn → CSem)

It consists of a compact closed category for syntax, a com-
pact closed category for semantics, a strongly monoidal
functor, and a principle of lexical substitution:

[[w1w2 · · ·wn]] := F (α)([[w1]]⊗ [[w2]]⊗ · · · [[wn]]) (1)

for w1w2 · · ·wn a string of words, α its grammatical struc-
ture, F (α) the translation of α to a distributional setting, and
[[x]] the distributional meaning of a word or a string of words.

In practice, these abstract models are instantiated
as concrete models. Below we describe the cases of
(PRG,FVectR, F ) for vectors as distributional representa-
tions, and (PRG, CPM(FHilbR), F ) for density matrices.

In favour of a formal description of the underlying mathe-
matical setting, we adhere to the technical language of cate-
gory theory; the reader less familiar with this language may
skip this section.

Instantiation to (PRG,FVectR, F )

On the syntactic side, we work with a pregroup grammatic
model of syntax due to Lambek (2001). A pregroup alge-
bra is a compact closed category. It consists of a partially
ordered monoid where each element has a left and a right
adjoint PRG = (P,≤, ·, 1, (−)r, (−)l). The notion of ad-
junction here means that for each p ∈ P , we have a pr and a
pl in P such that:

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl

A pregroup grammar is a pregroup algebra T (B) generated
over the set of basic grammatical types of a language, e.g.
the set B = {n, s} for n denoting the type of a noun phrase
and s the type of a sentence. It comes equipped with a re-
lation R ⊆ T (B) × Σ that assigns to the vocabulary Σ of
a language grammatical types from T (B). For example, ad-
jectives of English have type n · nl, intransitive verbs have
type nr · s and transitive verbs have type nr · s · nl.

In a pregroup algebra, a string of words of the vocab-
ulary w1w2 · · ·wn has grammatical structure α when for
ti ∈ R[wi], there is a morphism t1 · t2 · · · · · tn

α→ t in
the pregroup algebra seen as a compact closed category.

On the semantic side, we work with FVectR: the compact
closed category of finite dimensional vector spaces over re-
als R and the linear maps between the spaces. For each vec-
tor space V , its dual space V ∗ is its left and right adjoint
V l = V r = V ∗. In the presence of a fixed basis we have
V ∗ ∼= V . This category has the following morphisms for ⊗
the tensor product between vector spaces:

εV : V ⊗ V → R ηV : R→ V ⊗ V

Given
∑
ij Cij

−→vi ⊗ −→vj ∈ V ⊗ V and a basis {−→v i}i for V ,
these maps are concretely defined as follows:

εV (
∑
ij

Cij
−→vi⊗−→vj ) :=

∑
ij

Cij〈−→vi |−→vj 〉 η(1) :=
∑
i

−→vi⊗−→vi

The syntax-semantics map is the functor

F : PRG→ FVectR

given on basic types by F (n) := N and F (s) = S for N
and S two vector spaces in FVectR. This functor is strongly
monoidal, resulting in equalities on elements such as

F (p·q) = F (p)⊗F (q) F (1) = R F (pr) = F (pl) = F (p)∗

and on morphisms such as

F (p ≤ q) = F (p)→ F (q)

and

F (p · pr ≤ 1) = εF (p) F (1 ≤ pr · p) = ηF (p)

plus two similar ones for the left adjoints.
In this setting, the distributional meanings of words are

vectors, hence the principle of lexical substitution instanti-
ates as follows:

−−−−−−−−→w1w2 · · ·wn := F (α)(−→w 1 ⊗−→w 2 ⊗ · · · ⊗ −→w n) (2)

for −→wi the vector representation of word wi.

Instantiation to (PRG, CPM(FHilbR), F )

The syntactic side is as in the previous case. On the seman-
tic side, we work in the (dagger) compact closed category
CPM(FHilbR) over finite dimensional Hilbert spaces and
completely positive maps (Selinger 2007). Here, objects are
of the form V ⊗V ∗, elements of which represent density op-
erators, that is, they are self-adjoint, semi-definite positive,
and have trace 1. A completely positive map between two
density matrices preserves this structure. Formally, this is a
morphism f : V ⊗ V ∗ → W ⊗W ∗ for which there exists a
vector space X and a linear map g : V → X ⊗W such that
f = (g ⊗ g) ◦ (1W⊗W ⊗ ηX) in FHilbR. The ε and η maps
of this category are obtained by the images of the respective
maps in FHilbR.

The categorical compositional distributional semantics
works along the following functor:

F : PRG→ FHilbR → CPM(FHilbR)

Here, the distributional meanings of words are density ma-
trices, hence the principle of lexical substitution instantiates
as follows:

̂w1 · · ·wn := F (α)(ŵ1 ⊗ · · · ⊗ ŵn) (3)

for ŵi the density matrix representation of word wi and ⊗
the tensor product in CPM(FHilbR).



KL-Divergence and Relative Entropy
For a vector space V with a chosen orthonormal basis {−→vi}i,
a normalized vector −→v =

∑
i pi
−→vi can be seen as a proba-

bility distribution over the basis. In this case one can define
a notion of entropy for −→v as follows:

S(−→v ) = −
∑
i

pi ln pi

which is the same as the entropy of the probability distribu-
tion P =

∑
i pi over the basis.

For two vectors −→v ,−→w with probability distributions P
and Q, the distance between their entropies, referred to by
Kullback-Leibler divergence, is defined as:

KL(−→v ||−→w ) =
∑
j

pj(ln pj − ln qj)

This is a measure of distinguishability. One can define a de-
gree of representativeness based on this measure:

RKL(−→v ,−→w ) =
1

1 +KL(−→v ||−→w )

This is a real number in the unit interval. When there are
non zero weights on the basis elements of −→v that are zero
in −→w , then ln 0 = ∞ (by convention 0 ln 0 = 0) and so
RKL(−→v ,−→w ) = 0. So when the support of P is not included
in the support of Q then RKL = 0, and when P = Q then
RKL = 1.

Both KL-divergence and representativeness are asymmet-
ric measures. The following measure, referred to by Jensen-
Shannon divergence, provides a symmetric version:

JS(−→v ,−→w ) =
1

2

[
S(P ||P +Q

2
) + S(Q||P +Q

2
)

]
If there are correlations between the basis of V , these can

be represented by a positive semi-definite symmetric ma-
trix. Suppose we write this matrix in the chosen orthonormal
basis as v̂ =

∑
ij pij

−→vi ⊗−→vj . The diagonal entries of v̂ are
probabilities over the basis, so we have:∑

ii

pii = 1

The non-diagonal entries denote the correlations between
the basis. The correlation between −→vi and −→vj is the same
as the correlation between −→vj and −→vi . v given in the form
above is the matrix form of a density operator in the chosen
basis {−→vi}i.

Density matrices have a notion of entropy called von Neu-
mann entropy, defined as follows:

N(v̂) = −Tr(v̂ ln v̂)

They also have a notion of KL-divergence:

N(v̂||ŵ) = Tr v̂(ln v̂ − ln ŵ)

The representativeness between two density matrices is de-
fined in a similar way as for vectors. It is a real number in
the unit interval, with 0 and 1 values as described before:

RN (v̂, ŵ) =
1

1 +N(P ||Q)

The density matrix version of the Jensen-Shannon diver-
gence is obtained by replacing S with N .

A vector can be represented as a diagonal density matrix
on the chosen basis {ovvi}i. In this case, entropy and von
Neumann entropy are the same, since the density matrix has
no information on its non-diagonal elements, denoting a zero
correlation between the chosen basis.

Distributional Inclusion Hypothesis for
Vectors and Density Matrices

According to the distributional inclusion hypothesis (DIH)
if word v entails word w then the set of contexts of v are
included in the set of contexts of w. This makes sense since
it means that whenever word v is used in a context, it can
be replaced with word w, preserving the meaning. In other
words, in such cases, meaning of w subsumes meaning of v.
For example, ‘cat’ entails ‘animal’, hence in the sentence ‘A
cat is drinking milk’, one can replace ‘cat’ with ‘animal’ and
the meaning of the sentence stays valid. On the other hand,
‘cat’ does not entail ‘goldfish’, evident from the fact that
the sentence ‘A goldfish is drinking milk’ is very unlikely to
appear in a real corpus.

Different asymmetric measures on probability distribu-
tions have been used to model and empirically evaluate
the DIH. Entropy-based measures such as KL-divergence is
among successful such measures. Take the orthonormal ba-
sis of a distributional space to be the context lemmas of a
corpus and this measure becomes zero if there are contexts
with zero weights in −→v that do not have zero weights in −→w .
In other words, RKL(−→v ,−→w ) = 0 when v does not entail w.
The contrapositive of this provides a degree of entailment:

−→v ` −→w ⇒ RKL(−→v ,−→w ) 6= 0 (4)

The α-skew divergence of Lee (Lee 1999) and a symmetric
version of it based on JS (Dagan, Lee, and Pereira 1999)
are variations on the above.

Similarly, for density matrices one can use the degree of
representativeness of two density matrices RN to check for
inclusion of contexts.

v̂ ` ŵ ⇒ RN (v̂, ŵ) 6= 0 (5)

Here contexts can be single context lemmas for the diagonal
elements where the basis are reflexive pairs (pi, pi); contexts
can also be pairs of two context lemmas for the non-diagonal
elements where the basis are pairs (pi, qj) with pi 6= qj . So
not only we are checking inclusion over single contexts, but
also over correlated contexts. The following example shows
why this notion leads to a richer notion of entailment.

For the sake of simplicity suppose we do not care about
the frequencies per se, but whether the bases occurred with
the target word at all. So the entries are always either 1 or
0. Consider a distributional space with basis {aquarium, pet,
fish} and two target words: ‘cat’ and ‘goldfish’ therein. As-
sume that we have seen ‘cat’ in the context of ‘fish’, and also
independently, in the context of ‘pet’. Assume further that
we have seen the word ‘goldfish’ in the context of ‘aquar-
ium’, and also in the contexts of ‘pet’ and ‘fish’, but when-
ever it was in the context of ‘pet’, ‘fish’ was also around: for
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Figure 1: Inclusion of subspaces in the ‘goldfish’ example.

example they always occurred in the same sentence. Hence,
we have never seen ‘goldfish’ with ‘pet’ or ‘fish’ separately.
This signifies a correlation between ‘pet’ and ‘fish’ for the
target word ‘goldfish’.

This correlation is not representable in the vector case and
as a result, whereas ‘cat’ does not normally entail ‘goldfish’,
its vector representation does, as the set of contexts of ‘cat’
is included in the set of contexts of ‘goldfish’:

aquarium pet fish
goldfish 1 1 1

cat 0 1 1

By moving to a matrix setting, we are able to represent this
correlation and get the correct entailment relation between
the two words. In this case, the basis are pairs of the original
basis elements. Abbreviating them to their first letters, the
matrix representations of ‘cat’ and ‘goldfish’ become:

goldfish a p f
a 1 0 0
p 0 1 1
f 0 1 1

cat a p f
a 0 0 0
p 0 1 0
f 0 0 1

It is not immediately apparent from the matrix repre-
sentations that the contexts of ‘goldfish’ do not include
the contexts of ‘cat’. However to assess the inclusions of
contexts, one needs to compare the spans of their eigen-
vectors with non-zero eigenvalues. For ‘cat’, these eigen-
vectors are [(1, 0, 0), (0, 1, 0)] and for ‘goldfish’ they are
[(1, 0, 0), (0, 1, 1)]. The spans of each are depicted in Fig-
ure 1, and one can clearly see that neither one is a subspace
of the other.

Without taking correlations of the basis into account,
DIH has been strengthened from another perspective and
by the realization that contexts should not be all treated

equally. Various measures were introduced to weight the
contexts based on their prominence, for example by taking
into account their rank (Weeds, Weir, and McCarthy 2004;
Clarke 2009; Kotlerman et al. 2010). From the machine
learning side, classifiers have been trained to learn the en-
tailment relation at the word level (Baroni et al. 2012). All
of these improvements are applicable to the above density
matrix setting.

Categorical Compositional Distributional
Entailment

Montague style semantics of natural language comes
equipped with a notation of entailment, where for two sen-
tences s1 and s2, we have “s1 entails s2” iff for φ1 and φ2
their logical translations, we have that φ1 ` φ2 in a logical
system such as first order logic. So entailment becomes the
question of derivability in a logic.

In distributional semantics, similar to the case of co-
occurrence distributions for phrases/sentences, the inclu-
sion hypothesis does not naturally extend from words to
phrases/sentences. One cannot say that a sentence s1 entails
the sentence s2 since the contexts of s1 are included in con-
texts of s2. Similar to the case of co-occurrence counts, it
is not clear what the contexts of a sentence are, they cannot
be counted directly, they are not the sum or multiplication
of the contexts of the words therein. So like for similarity,
entailment should be computed compositionally.

In a CCDS, in either of its instantiations to vectors and
density matrices, the F functor provides a translation of sen-
tences of natural language to a distributional setting, which
comes inherently with a compositional notion of entailment,
as defined below:
Definition. Categorical compositional distributional entail-
ment (CCDE). For two strings v1v2 · · · vn and w1w2 · · ·wn,
and X either KL or N , we have v1v2 · · · vn ` w1w2 · · ·wn
whenever RX([[v1 · · · vn]], [[w1 · · ·wn]]) 6= 0

We show that this entailment can be made compositional;
that is, we derive a phrase/sentence-level entailment from
the entailments between the words thereof. What makes this
possible is the concept of ‘upward monotonicity’ from Nat-
ural Logic (MacCartney and Manning 2007). Roughly put,
this expresses that phrases/sentences of an upward mono-
tone vocabulary entail each other.
Proposition. For all i, 1 ≤ i ≤ n and vi, wi upwardly
monotone words, we have

vi ` wi ⇒ v1v2 · · · vn ` w1w2 · · ·wn
Outline of proof. First consider the case of density matrices.
By Eq. 5 and CCDE, it suffices to show:

RN (v̂i, ŵi) 6= 0 ⇒ RN ( ̂v1 · · · vn, ̂w1 · · ·wn) 6= 0

By definition of positive operators R̂(v̂i, ŵi) 6= 0 is equiv-
alent to the existence of ri ∈ R and a positive operator v̂′i
such that ŵi = riv̂i+v̂′i. Assuming these, it suffices to prove
that there exists q ∈ R and π̂′ a positive operator such that

F (β)(ŵ1 ⊗ · · · ⊗ ŵn) = qF (α)(v̂1 ⊗ · · · ⊗ v̂n) + π̂′



according to the principle of density lexical substitution (Eq.
3) and for α and β grammatical structures of the w and v
sentences respectively.

Second, by Lambek’s switching lemma (Lambek 2001),
a sequence of epsilon and identity maps suffice for the rep-
resentation of the grammatical structure of any sentence in
a pregroup grammar. Applying this to F (β) makes the left
hand side of the above equality equivalent to

(ŵ1 ⊗ · · · ⊗ ŵk) ◦ · · · ◦ (ŵl ⊗ · · · ⊗ ŵs)
where each ŵj is either a density matrix ŵi for 1 ≤ i ≤ n
or an identity map over the types of these density matrices.

Finally, if each ŵi is substituted with its corresponding
assumption riv̂i + v̂′i then by bi-linearity of the ⊗ the above
will become equivalent to an expression as follows:

(r1r2 · · · rn)(v̂1 ⊗ · · · ⊗ v̂n) + Π

where clearly r1r2 · · · rn ∈ R and it is straightforward to
see that Π is a sum of expressions of the form r1(v̂1 ⊗ · · · ⊗
v̂′k) + r2(v̂′2 ⊗ · · · ⊗ v̂′n) + · · · + (v̂′1 ⊗ · · · v̂′n) and hence
a positive operator. So we have found the q and π̂′ that we
were after.

For the case of vectors, the proof proceeds as above, as
vectors are density matrices that only have diagonal ele-
ments. �

The above proposition means if w1 represents v1 and w2

represents v2 and so on until wn and vn, then the string
w1w2 · · ·wn represents the string v1v2 · · · vn composition-
ally, from meanings of phrases/sentences. The degree of rep-
resentativeness of words – either based on KL-divergence or
von Neumann entropy – extends to the degree of representa-
tiveness of phrases and sentences.

Working with Real Data
In this section we present an application of the proposed
model in a phrase entailment task based on data collected
from a corpus.

Dataset. In order to create our dataset we first randomly
selected 300 verbs from the most frequent 5000 words in
the British National Corpus, and randomly picked either a
hyponym or a hyponym from WordNet, provided that it oc-
curred more than 500 times. Next, each entailing verb was
paired with one of its common subject or object nouns, while
the corresponding entailed verb was paired with an appropri-
ate hypernym of this noun, where

hyponym ` hypernym
This created 300 phrase entailments of the form

subject1 verb1 ` subject2 verb2
and verb1 object1 ` verb2 object2.

From these, we selected 23 phrase pairs to reflect a range of
entailment degrees.

The degree of entailment between the produced phrases
were evaluated by 16 humans, who provided their scores
in a scale from 1 (no entailment) to 7 (entailment), follow-
ing the common practice in the relevant literature—see, for
example, (Mitchell and Lapata 2010). Each entailment was
scored by the average across all annotators.

Basic vector space. The distributional space where the
vectors of the words live is a 300-dimensional space pro-
duced by non-negative matrix factorization (NMF). The
original vectors were 10,000-dimensional vectors weighted
by pointwise mutual information (PMI), for which the con-
texts counts had been collected from a 5-word window
around each target word.

Entailment via KL-divergence in FVectR. For degrees of
entailment obtained via KL-divergence, we work on the in-
stantiation of CCDS to FVectR. The vector representation of
a verb-noun phrase is obtained by applying Equation 1:
−−−−−−→
verb noun = F (α)(v ⊗−→n ) = (1S ⊗ εN )(v ⊗−→n )

This simplifies to the matrix multiplication between the ma-
trix of the verb and the vectors of the noun:

v ×−→n (6)

The vector of a noun-verb phrase is computed similarly,
where in this case α will be εn ⊗ 1s and the final matrix
multiplication becomes −→n T × v, for −→n T the transpose of
the vector of the noun. For details of these computations, we
refer the reader to our previous work (Coecke, Sadrzadeh,
and Clark 2010; Grefenstette and Sadrzadeh 2011; Kartsak-
lis, Sadrzadeh, and Pulman 2012), where these have been
worked out for a variety of different examples.

Vectors of nouns −→n are created using the usual distribu-
tional method. For producing the verb matrices, we work
with a variation of the method suggested in (Grefenstette and
Sadrzadeh 2011), referred to by relational. We build matri-
ces as follows:

v =
∑
i

−→n i ⊗ (−→v �−→n i)

where −→ni enumerates the nouns that the verb has modified
across the corpus and −→v is the distributional vector of the
verb built in the same way as the nouns. The original rela-
tional method computed the matrix of the verb by encoding
in it the information about the noun arguments of the verb
across the corpus. The above formulation enriches this en-
coding by also taking into account the context vector of the
verb, hence also encoding direct information about the verb
itself.

By substituting this in the matrix multiplication of Equa-
tion 6 and simplifying it, we obtain the following vector rep-
resentation for each phrase (verb-noun or noun-verb):

−−−−→
phrase = −→v �

∑
i

〈−→n | −→n i〉−→n i

Roughly speaking, the above says that the vector meaning
of any such phrase represents the contextual properties of
the verb of the phrase together with the common contextual
properties of the noun of the phrase and the nouns that the
verb has modified across the corpus.

Entailment via relative entropy in CPM(FHilbR). In
the case of degrees of entailment using relative entropy,



we work with the instantiation of CCDS to CPM(FHilbR),
where Equation 1 results in a density matrix, computed as
follows for a verb-noun phrase:

ˆverb noun = F (α)(v̂ ⊗ n̂) = (1S ⊗ εN )(v̂ ⊗ n̂)

where v̂ and n̂ are the density matrices of the verb
and the noun, respectively, and ⊗ the tensor product in
CPM(FHilbR). This simplifies to the following formula:

TrN (v̂ ◦ (n̂⊗ 1S)) (7)

For details, see Piedeleu et al. (2015). The density matrix of
a noun-verb phrase is computed similarly by swapping the
corresponding identity 1S and epsilon maps εN in α.

The density matrix for a word w, regardless of its gram-
matical type, is created as:

ŵ =
∑
i

pi
−→ci ⊗−→ci

where i iterates through all contexts of w and−→ci is a context
vector computed as the average of the vectors of all other
words in the same context with w. The correlations between
the contexts in this case is taken to be the joint probability of
their basis elements, which correspond to words annotated
with POS tags.

Substituting these in Equation 7 and simplifying it re-
sults in the following density matrix representation for each
phrase:

ˆphrase = v̂T × n̂× v̂
Again, the formulation is the same for a verb-noun or a
noun-verb phrase. In simple terms, this results in a density
matrix that takes into account the contextual properties of
the verb, the noun, and the nouns that the verb has modified
across the corpus, with the added value that these contextual
properties are now enriched: they also reflect the correlations
between the contexts.

Entailment for simple vector composition. Finally, as
a comparison, we also work with degrees of entailment
obtained by computing KL-divergence on a simple com-
positional model achieved via element-wise addition and
element-wise multiplication of the vectors of the words in
the phrase:

−−−−→
phrase+ = −→v +−→n

−−−−→
phrase� = −→v �−→n

where−→v and−→n denote the distributional vectors of the verb
and the noun, respectively.

The experiment proceeds as follows: We firstly produce
phrase vectors (or density matrices) by composing the vec-
tors or the density matrices of the individual words in each
phrase, and then we compute an entailment value for each
pair of phrases; in the case of vectors, this value is given
by the representativeness on the KL-divergence between the
phrase vectors, while for the density matrix case it is the rep-
resentativeness on the von Neumann entropy between the
density matrices of the phrases. The performance of each
model is expressed as the Spearman’s correlation of the
model predictions with the human judgements.

The results are presented in Table 1, where a non-
compositional baseline is also included: we computed RKL
for the lexical vectors of the heads of the sentences, that is
their verbs. The upper bound is the inter-annotator agree-
ment.

Model ρ Inf F1 Acc
Baseline (vector of verb) 0.24 0.37 0.57 0.74
Categorical
RKL (vectors) 0.66 0.56 0.74 0.78
RN (density matrices) 0.48 0.60 0.76 0.78

Simple
R+
KL (e.w. addition) 0.52 0.52 0.71 0.78

R�KL (e.w. multipl.) 0.41 0.32 0.64 0.61
Upper bound 0.66

Table 1: Results for a phrase entailment experiment.

We also present informedness, F1-score and accuracy for
a binarized variation of the task, in which a phrase pair is
classified as “entailment” or “non-entailment” depending on
whether its average human score was above or below the
mean of the annotation range. Note that informedness is
an information-theoretic measure that takes into account the
true negatives count (something that is not the case for F1-
score, for example) and thus it is more appropriate for small
and relatively balanced datasets such as ours. The numbers
we present for the binary task are based on selecting an ap-
propriate threshold for each model, above of which entail-
ment scores are classified as positive. This threshold was se-
lected in order to optimize informedness.

All the compositional models (for both vectors and den-
sity matrices) outperformed the non-compositional baseline.
In the correlation task, the categorical vector model RKL
was better, achieving a score that matches the inter-annotator
agreement; in the classification task, the categorical density
matrix model RN is ahead in every measure.

A snapshot of the results including the highest and lowest
pairs according to human judgements are shown in Table 2.
We see that although each model returns values in a slightly
different range, all of them follow to some extent the gen-
eral pattern of human annotations. From all three models,
the predictions of the model based on element-wise multipli-
cation of vectors are quite marginal. The categorical models
and addition of vectors return more balanced results, without
avoiding small mistakes.

Conclusion and Future Directions
We reviewed the categorical compositional distributional
model of meaning. This model extends the distributional hy-
pothesis from words to strings of words. We showed how the
model can also extend the distributional inclusion hypothe-
sis (DIH) from words to strings. In this case, one is able to
derive entailment results over strings of words, from the en-
tailments that hold between their constituent words.

We also reviewed the existing notion of KL-divergence
and its application to word level entailment on vector repre-
sentations of words. We then argued for and showed how



Entailment Humans Categorical Simple
RKL(0.12) RN (0.17) R+

KL (0.13) R�
KL (0.08)

arrange task ` organize work 5.50 (0.785) - T 0.164 - T 0.371 - T 0.192 - T 0.142 - T
recommend development ` suggest improvement 5.38 (0.768) - T 0.146 - T 0.250 - T 0.182 - T 0.084 - T
advertise notice ` announce sign 5.38 (0.768) - T 0.114 - F 0.187 - T 0.100 - F 0.090 - T
confirm number ` approve performance 1.81 (0.258) - F 0.111 - F 0.140 - F 0.087 - F 0.084 - T
recall time ` cancel term 1.63 (0.232) - F 0.070 - F 0.169 - F 0.126 - F 0.072 - F
editor threathen ` application predict 1.13 (0.161) - F 0.082 - F 0.184 - T 0.092 - F 0.080 - F

Table 2: A snapshot of a phrase entailment experiment. The human judgements are between 1 and 7, with their values normalised
between 0 and 1 in brackets. The model predictions are between 0 and 1. T and F indicate classification of each phrase pair as
entailment or non-entailment according to each model. The numbers that appear in brackets at the headers are the classification
thresholds optimizing informedness for the various models.

moving from vectors to density matrices strengthens the
DIH. Finally, we presented a preliminary toy experiment on
an entailment task for short subject-verb sentences and verb-
object phrases and compared the correlation between the de-
grees of entailment as predicted by the model and as judged
by humans. In this task both vector-based and categorical
compositions performed above the baseline.

On the theoretical side, we proved that strings of words
whose grammatical structures are their syntactic parses ad-
mit a compositional notion of entailment. Extending this
result to strings with meaning postulates, such as Frobe-
nius algebras for relative pronouns, constitutes future work.
Regarding the experimental side, the theoretical argument
of the paper favours categorical composition over simple
element-wise operators between vectors, and the results pre-
sented here are supportive to this. The density matrices for-
mulation, which in theory is the most powerful, worked bet-
ter on the classification task; furthermore, informal exper-
imentation showed that a non-compositional model based
solely on the relative entropy of the density matrices of the
verbs scores a ρ much higher than the corresponding vector-
based baseline, providing additional evidence about the rich-
ness of the proposed representation. A large scale exper-
iment to verify the predictions properly is under way and
constitutes work in progress.

KL-divergence and relative entropy give rise to an order-
ing on vectors and density matrices respectively. They rep-
resent the difference in the information contents of the un-
derlying vectors and density matrices. Exploring this order
and the notion of logic that may arise from it is work in
progress. The work of Widdows (2004) and Preller (2011)
might be relevant to this task.
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