
The Effect of Domain Modeling on Performance of Planning Algorithms

Roman Barták, Jindřich Vodrážka
Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 25, 118 00 Praha 1, Czech Republic

Abstract

It is known that a planning domain model influences
performance of planners, but so far there have been only
limited studies how exactly models influence planners’
performance. There are also no guidelines how to de-
sign efficient planning models. This paper studies sev-
eral modeling techniques, namely factored and struc-
tured representations of states, heuristics, and control
knowledge and their influence on performance of plan-
ning algorithms when iterative deepening and branch-
and-bound search procedures are used. The Picat plan-
ning module is used to demonstrate the techniques on
classical planning domains from International Planning
Competitions.

Automated planning is a core area of Artificial Intelligence
with decades of research history. Despite of big progress in
planning techniques, there has not been principal change of
the modeling approach since the STRIPS planning model
(Fikes and Nilsson 2002) that originated at the Shakey
project (Nilsson 1984). This original idea how to represent
a planning domain is implemented in the Planning Domain
Definition Language (PDDL) (McDermott 1998) introduced
for International Planning Competitions (IPCs) and is used
as a de-facto standard modeling language by the planning
community. There exist some extensions of PDDL towards
uncertainty and time, there exist timeline-based approaches
used mainly in space applications, and there exist extensions
towards including control structures, namely Hierarchical
Task Networks (Nau et al. 2003) and control rules (Bac-
chus and Kabanza 2000; Kvarnström and Magnusson 2003).
Other formal modeling approaches such as various action
languages (Gelfond and Lifschitz 1998) are less widespread
in planning as they focus on expressivity and semantics
rather than on planner’s performance. Still, automated plan-
ning techniques are rarely used in practice, for example in
robotics and computer games, by people that are not experts
in planning despite the effort to separate problem model-
ing from the actual solving (planning) algorithm. We believe
that one of the reasons could be that there are actually no
guidelines how to design efficient planning domain models.
Though it is clear that the domain model has a crucial im-
portance for planner’ performance, the research focus is still
much higher on planning algorithms than on domain model-
ing.

Some papers (Howe and Dahlman 2002; Vallati et al.
2015) showed that even small syntactic changes such as dif-
ferent order of operators and predicate definitions influence
performance of planners. Other papers (Zhou and Dovier
2013; Barták and Zhou 2014; Zhou et al. 2015) showed that
a different modeling approach used in the Picat program-
ming language (Picat 2015) that embeds ad-hoc state repre-
sentation, heuristics, and control structures can easily beat
domain-independent planners and be on par with domain-
dependent planners (Barták et al. 2015) while preserving the
size of models comparable to PDDL models. Still, it was not
clear how these modeling techniques contribute to perfor-
mance of planners, how they interact between themselves,
and how they relate to the search algorithm.

In this paper we attempt to address the problem of un-
derstanding how domain modeling influences performance
of planning algorithms. In contrast to (Vallati et al. 2015)
we focus on semantic techniques, namely representation
of states (factored vs structured), heuristics, and control
knowledge. Because of this, we decided to exploit the
planner module of the Picat language that provides a full
power of a programming language. The idea is taking the
modeling techniques from (Barták et al. 2015) and showing
how they contribute to planner’s performance using existing
domains from IPCs.

Background on (Picat) Planning
Automated planning deals with the problem of finding a se-
quence of actions called a plan that changes the given state of
the world to a state satisfying a certain goal condition. Hence
this so called classical planning corresponds to the problem
of finding a path in a directed graph, where nodes describe
states of the world and arcs correspond to state transitions
via actions. Formally, let γ(s, a) describe the state after ap-
plying action a to state s, if a is applicable to s (otherwise
the function is undefined). Then the planning task is to find a
sequence of actions 〈a1, a2, . . . , an〉 called a plan such that,
s0 is the initial state, for each i ∈ {1, . . . , n}, ai is applica-
ble to the state si−1, si = γ(si−1, ai), and sn is a goal state.
For solving cost-optimization problems, a non-negative cost
is assigned to each action and the task is to find a plan with
the smallest cost. The major difference from classical path-
finding is that the state space for planning problems is enor-
mous and does not fit in memory. Hence a compact repre-

sentation of states and actions (and state transitions) is nec-
essary. This representation is called a domain model.

Since the time of Shakey The Robot (Nilsson 1984) the
factored representation of states is used, which has been re-
flected later in the design of the Planning Domain Definition
Language (PDDL) (McDermott 1998). Thanks to Interna-
tional Planning Competitions (IPCs), PDDL is today a de-
facto standard modeling language for describing planning
domains and problems. In this representation a state consists
of a vector of attribute values and actions are changing val-
ues of certain variables (action effect) while requiring values
of some attribute variables as preconditions.

Even more advanced is a structured representation, where
a state includes objects possibly with attributes as well as re-
lationships between the objects (Russell and Norvig 2009).
Models based on first-order logic are close to this represen-
tation, but we are not aware about any widely-used planning
domain modeling language based on structured representa-
tion that leads to efficient planners. The Picat planner
module supports both factored and structured representa-
tions of states – the state is represented by any term – which
was one of the reasons for selecting the Picat in this study.

The detailed description of Picat domain models can be
found in (Picat 2015; Barták et al. 2015). Briefly speaking
the planning domain model in Picat is expressed as a set of
rules describing the transition function γ in the form
action(+State,-NextState,-Action,-Cost),

precondition,
[control_knowledge]

?=>
description_of_next_state,
action_cost_calculation,
[heuristic_and_deadend_verification].

The Picat planner uses two search approaches to find opti-
mal plans. Both of them are based on depth-first search with
tabling and they correspond to classical forward planning.
They start in the initial state, select the first action rule that
is applicable to the current state, apply the rule to generate
the next state, and continue until they find a state satisfying
the goal condition (or the resource limit is exceeded). In case
of failure, an alternative action rule is tried.

The first approach starts with finding any plan using the
depth-first search. The initial limit for plan cost can (option-
ally) be imposed. Then the planner tries to find a plan with
smaller cost so a stricter cost limit is imposed. This process
is repeated until no plan is found so the last plan found is
an optimal plan. This approach is very close to branch-and-
bound technique (Land and Doig 1960). Note that tabling is
used there – the underlying solver remembers the best plans
found for all visited states so when visiting the state next
time, the plan is retrieved rather than looked for again.

The second approach exploits the idea of iteratively ex-
tending the plan length as proposed first for SAT-based plan-
ners (Kautz and Selman 1992). It first tries to find a plan with
cost zero. If no plan is found, then it increases the cost by 1.
In this way, the first plan that is found is guaranteed to be op-
timal. Unlike the IDA* search algorithm (Korf 1985), which
starts a new round from scratch, Picat reuses the states that
were tabled in previous rounds.

Picat uses linear tabling (Zhou et al. 2008) to memo-
rize answers to calls which implicitly prevents loops and
brings properties of graph search (not exploring the same
state more than once) to classical depth-first search used by
Prolog-like languages. Tabling can also be used to remember
“best” answers so it can be exploited to find optimal plans.
Picat supports so called resource-bounded search that pre-
vents exploring paths exceeding a given length (Zhou 2014).

Domain Models
We have selected several domains from past IPCs to com-
pare the modeling approaches described in (Barták et al.
2015). Namely we selected Depots introduced in IPC 2002,
Nomystery and Visitall from IPC 2011, and Childsnack from
IPC 2014. For selecting the domains, we used several crite-
ria. First, we looked for domains with some natural control
knowledge and heuristics. In other words there should be
some “common sense” guidelines that humans would use to
solve problems in these domains. Second, the number of op-
erators should be kept small as we need to control how the
domain models evolve. Third, we looked for domains from
different areas that would likely show different properties of
domain models. Finally, we wanted a mix of old well-known
domains and new domains to show that the studied model-
ing techniques are applicable not only to domains used for
benchmarking for a long time but also to new domains.

In this section, we will explain factored and structured
representations for each domain and we will describe heuris-
tics and control knowledge proposed for these domains. The
factored representations basically mimic the original PDDL
encodings of the domains. The structured representations
as well as heuristics and control knowledge are tailored for
each domain separately though the reader can observe some
unifying principles.

Depots
Depots is a combination of other well known planning do-
mains: Logistics and Blocksworld. They are combined to
form a domain in which trucks can transport crates around
and then the crates must be stacked onto pallets at their
destinations. The stacking is achieved using hoists, so the
stacking problem is like a blocks-world problem with hands.
Trucks can behave like “tables”, since the pallets on which
crates are stacked are limited.

The factored representation mimics the original PDDL
domain model. This model uses predicates at/2 to de-
scribe location of crates, hoists, pallets, and trucks, predi-
cates on/2 and clear/1 to model towers of crates, pred-
icates lifting/2 and available/1 to describe that
hoist holds a specific crate or it is empty, and finally predi-
cate in/2 specifying that a crate is loaded to some truck. In
Picat, we model a set of predicates as an ordered list to make
set operations efficient. For example the set of predicates:

{at(p0,l3), at(p1,l4), at(p2,l3), at(p3,l2)}

is modeled as an ordered list :

[[p0|l3], [p1|l4], [p2|l3], [p3|l2]]

In summary, we model the state as a tuple
{ClearList, AvailList, AtPred, OnPred,
InPred, LiftPred} where each component is a list of
attribute tuples for a corresponding predicate.

The structured representation exploits the fact that several
predicates describe a compound object such as a tower or a
truck with crates loaded to it. We model each tower as a list
of crates that forms it (the top crate is first in the list). The
last element of this list is a palette so via a rigid predicate
at/2 we can find the location of the tower. Note that rigid
predicates can be stored as Picat facts and they are not repre-
sented in states. We model each hoist as a pair of its location
and loaded crate (or an empty list if no crate is being lifted)
and similarly we model each truck; the loaded crates are rep-
resented as an ordered list of crate names. In summary, we
model the state as a tuple {Towers,Hoists,Trucks}.
The structured representation is more compact, but other-
wise it is not significantly different from the factored repre-
sentation.

To estimate the number of actions to the goal, we adapted
the classical heuristics for the Blocksworld domain. If a
crate is wrongly placed and it is being lifted by an hoist then
we need at least one action to drop the crate to the right
place. If a wrongly placed crate is not lifted by any hoist
then we need at least two actions (to lift it and to drop it).

The control knowledge for the Depots domain is also de-
rived from the Blocksworld problem and it is very similar
to control rules developed for Blocksworld (Ghallab et al.
2004). They are based on the notion of good and bad towers.
The tower below some crate is good, if it is not necessary to
move any of its crates, otherwise the tower is bad. The con-
trol knowledge says that a crate is dropped to a good tower
(where it belongs) only and the crate is lifted from a bad
tower only. Next, the crate is unloaded from a truck only if
it can be dropped to a good tower at the same location. Fi-
nally, the truck moves only to location where some hoist lifts
a crate (to be loaded to that truck later) or if a crate loaded
at the truck belongs to that location.

Nomystery
In the Nomystery domain, there is a single truck with un-
limited load capacity, but with a given (limited) quantity of
fuel. The truck moves in a weighted graph where a set of
packages must be transported between nodes. Actions move
the truck along edges and load/unload packages. Each move
consumes the edge weight in fuel so the initial fuel quantity
limits how far the truck can move (no refueling is assumed).

The factored representation uses predicates at/2 to de-
fine locations of cargo items and truck and predicates in/2
telling that cargo item is loaded in a truck. There is also a
single predicate fuel/2 describing a fuel level of the truck.
In Picat we represent these predicates as ordered lists con-
taining the predicate arguments. Together, we represent the
state using a triple {Fuel,AtPreds,InPreds}, where
Fuel is the current fuel level of the truck. Recall that there
is a single truck so in each state there is a single predicate
fuel(Truck,Fuel).

The structured representation focuses on removing ob-
ject symmetries by representing objects via their (pos-

sibly changing) attributes rather than via their names.
For example, we can represent each item as a pair
[CurrLoc|GoalLoc] describing the current location
and goal location of the item. The current state is then repre-
sented using the tuple {Loc,Fuel,LCGs,WCGs}, where
Loc is the location of the truck, Fuel is the truck’s fuel
level, LCGs is an ordered list of destinations of loaded cargo
items, and WCGs is an ordered list of unloaded (waiting)
cargo items, each item is represented as we described above.

The straightforward heuristic estimates the distance to
goal as follows. For each unloaded item, we need at least
two actions, to load it and to unload it. For each loaded item,
we need at least one action to unload it. The drive actions
are “shared” between the cargo items, but we need at least
as many drive actions as the number of locations to visit.
The number of steps to goal is the sum of above numbers.

The control knowledge for the Nomystery domain ex-
ploits information that there is no capacity restriction of
the single truck. The following restrictions can be used for
ordering actions in the model and adding extra “precondi-
tions”. First, when the cargo item is delivered, it can be re-
moved from the state representation because there will be no
other actions related to this item (any action that manipulates
an already delivered item only enlarges the plan). Second,
the truck should load all cargo items at its current location
before driving somewhere else. If any item is left there then
the truck needs to return to that location to load that item
later, which only enlarges the plan (recall, that there is a sin-
gle truck in the domain). This can be achieved by putting
the load action before the driving action and setting the ac-
tion rule for loading to be deterministic (if anything can be
loaded then it is loaded first). Finally, any loaded cargo is
kept loaded until the truck reaches cargo’s destination. This
is achieved by unloading the cargo item only at its destina-
tion. We can make this rule even stronger – the truck does
not leave a given location until all loaded cargo items des-
tined to this location are unloaded. Together, we put the un-
load action before the drive action, we add extra condition
that an item is unloaded only at its destination, and we make
the action rule for unloading deterministic so all cargo items
(for current location) are unloaded before trying another ac-
tion. The only remaining non-determinism to be explored by
search is where the truck should go.

Visitall
The Visitall domain was proposed to challenge planners
based on delete-relaxation heuristics as it contains many
conflicting goals. The task is for an agent placed in the mid-
dle of square grid to visit all the cells in the grid. This do-
main is also specific by using a single operator only for mov-
ing from one cell to a neighboring cell.

The state of the Visitall domain is very simple, it is a lo-
cation (cell) of agent in the grid plus some indication of al-
ready visited cells. Hence for this specific domain, we do
not distinguish between factored and structured represen-
tations as they are identical. We model the state as a pair
{Loc,ToVisit}, where Loc is a the current location of
the agent and ToVisit is a list of locations to be visited.
We used this “complementary” representation of the set of

predicates visited/1 as it simplifies detection of the final
state (ToVisit is empty). This deviates from the original
PDDL model.

Good heuristics for the Visitall domain are computation-
ally expensive. The simplest heuristic is to count the num-
ber of not-yet visited locations. We used a more advanced
but still straightforward heuristic that is basically a combi-
nation (maximum) of two heuristics. One computes shortest
paths to all not-yet visited nodes and takes the longest of
these shortest paths. The other heuristic takes the shortest
from these shortest paths (hence this path does not contain
other not-yet visited locations) plus the number of remaining
not-yet visited locations. The shortest paths are computed on
demand and tabling is used to remember them so they are
not recomputed when required later (in some sense, this is
similar to running Dijkstra’s algorithm several times while
remembering and reusing already computed shortest paths).

As control knowledge we use a simple observation – the
agent should go only to cells that are on some shortest path
to any of not-yet visited cells. Any cell that does not satisfy
this condition is omitted from the next move.

Childsnack
The task in the Childsnack domain is to plan how to make
and serve sandwiches for a group of children in which some
are allergic to gluten. There are two actions for making sand-
wiches from their ingredients. The first one makes a sand-
wich and the second one makes a sandwich taking into ac-
count that all ingredients are gluten-free. There are also ac-
tions to put a sandwich on a tray and to serve sandwiches.
Problems in this domain define the ingredients to make sand-
wiches at the initial state. Goals consist of having all kids
served with a sandwich to which they are not allergic.

The factored representation again mimics the
original PDDL encoding that uses predicates
to identify bread at kitchen bread/1, con-
tent at kitchen content/1, and sandwiches
at kitchen sandwich/1 in kitchen, sandwiches
placed on trays on tray/2, locations of trays at/2,
and kinds that have been served served/1. There are
some rigid predicates defining if the content and bread
is gluten-free, while this information must be kept as
a fluent for sandwiches (no gluten sandwich/1).
Notice that names of sandwiches are used to identify
sandwiches so predicates notexist/1 are used to
indicate that there is a prospective sandwich. Hence
the “life” of sandwich starts as notexist which then
changes to at kitchen sandwich possibly ac-
companied by no gluten sandwich, followed by
on tray, and finally disappearing after being served
to a child. In summary, the state is represented as tu-
ple {Bread, Content, Sandwiches, OnTray,
SwNoGluten, SwNames, TrayLocs, Childs}
where each component is an ordered list of names
(constants) or pairs of names (in case of OnTray and
TrayLocs). We used a complementary representation of
predicate served/1 so the list Childs represents not-yet
served children.

The structured representation removes object symmetries

by ignoring names of bread, content, and sandwiches, and
representing each of them using either constant no gluten
or constant gluten. The not-yet made sandwich is rep-
resented by constant free. For children we can also ig-
nore the names so we can represent each children using
a pair {Loc,Type}, describing location and “type” of
children (gluten or no gluten). Also the trays are repre-
sented by their location and loaded sandwiches as a pair
{Location,Load}, where Loc is a current location of
the tray and Load is an ordered list of sandwiches loaded
to that tray (recall that sandwich is only identified by its
type). So the path of the sandwich starts as free. When the
sandwich is made, its identification changes to no gluten
or gluten. If the sandwich is put on tray, it is placed
to the corresponding Load list, and finally, if the sand-
wich is served then it disappears from the state. In sum-
mary, the structured state is represented by a tuple {Bread,
Content, Sandwiches, Trays, Childs}, where
the first threes components are ordered lists of object types,
Trays is an ordered list of pairs {Location,Load}, and
Chils is an ordered list of pairs {Loc,Type}.

For the Childsnack domain, there is a “perfect” heuristic
that computes the exact number of actions to reach the goal.
Each not-yet served children needs to be served and each lo-
cation where some not-yet served children is located must
be visited (it is possible to move directly between any pair
of locations). If there are not enough gluten-free sandwiches
made, they must be made. If not enough gluten-free sand-
wiches (made or not yet made) are placed on trays, they must
be placed on trays. Similarly for other sandwiches, where we
can also assume superfluous gluten-free sandwiches. Hence
we can easily count how many actions of each type we need
to reach the goal and this is in fact the minimal number of
actions as any other action is not necessary.

There is a deterministic method to find an optimal plan.
First, for each children we need to make a sandwich. Gluten-
free sandwiches are made first to ensure that there is enough
gluten-free bread and content. Note that this requires to
modify the representation of children as we need to distin-
guish between children with sandwich ready for them and
children with no sandwich made for them yet. The factored
representation can be extended by a new predicate for it;
the structured representation can add one argument to the
model. Only when all sandwiches are made, they are all
placed to a single tray (that may need to be moved to kitchen
first). As no parallel plans are assumed, using more trays
will not shorten the plan and hence a single tray is enough.
That tray is then moved between locations and all children in
each location are served before moving to another location.
We used non-deterministic selection of the next location to
visit to include some search decisions on the model.

Experimental Evaluation
The major goal of this study is showing how various mod-
eling techniques contribute to performance of planning al-
gorithms rather than giving the best so-far model for each
domain. We started with core models, both using factored
and structured representations, and we gradually added ex-
tensions with heuristics and control knowledge. This way

we obtained eight models for each domain (except Visi-
tall, where structured and factored representation are identi-
cal). We used problem instances from IPC competitions and
we looked for shortest plans. Table 1 shows the number of
problem instances per domain and the number of instances
solved optimally by the best model. For each problem, we
limited runtime to 30 minutes (if exceeded then the problem
is treated as unsolved) and memory to 1GB. We have used
parallel computation for our experiments (Tange 2011). The
experiments run on a computer with Intel R© CoreTM i7-960
running at 3.20GHz with 24 GB (1066 MHz).

Table 1: The number of problem instances.

domain #instances #optimal
Depots 20 13

Nomystery 30 30
Visitall 20 5

Childsnack 20 20

Factored vs Structured Representations
The first hypothesis is that the structured representation re-
quires less time and memory to solve the problem. Recall,
that the structured representation (among others) removes
the names of objects – the objects are represented via their
properties – and consequently removes object symmetries.
Another question is if there are differences between search
approaches depending on the used state representation. We
compared pure factored and structured representations and
their complete extensions with heuristics and control knowl-
edge. Figure 1 shows how the number of problems solved
optimally depends on time across all the domains.

The results clearly indicate the advantage of structured
representation for both search approaches though the im-
provement gap diminishes when heuristics and control
knowledge are used especially for iterative deepening. The
same behavior can be observed for individual domains (ex-
cept Visitall where both representations are identical). Even
for the Depots domain, where the structured representation
is not significantly different from the factored representation
(no object symmetries broken), the structured representa-
tion brings some runtime improvement thanks to its smaller
memory requirements, which also means faster comparison
of states. We do not present the graphs for memory con-
sumption as they show basically the same trend as graphs
with time.

Heuristics and Control Knowledge
In the second experiment we looked at the effect of heuris-
tic and control knowledge on performance of planning al-
gorithms, in particular how they compare with each other
and how they complement each other. The obvious hypoth-
esis is that heuristics and control knowledge improve per-
formance of planning algorithms, but the question is how
much and whether there is a difference between different
search approaches. One may compare different heuristics
theoretically with respect to their dominance, but recall that

Figure 1: The number of problems solved within a given
time for iterative deepening (top) and branch-and-bound
(bottom).

heuristics in the presented solving approach are used dif-
ferently than in the A*-family of algorithms. Heuristics are
used there to cutoff sub-optimal search branches so in some
sense they have a similar role as control knowledge that also
cutoffs or forces some search branches but using a very dif-
ferent mechanism. Hence, there is no obvious “syntactic”
comparison of contribution of heuristics and control knowl-
edge. Still, based on the role of heuristics, we can fine tune
the hypothesis that heuristics will be more beneficial for it-
erative deepening in particular to quickly find the size of an
optimal plan, but less beneficial for branch-and-bound. Con-
trol knowledge is expected to contribute more to improved
performance of both search approaches. Figure 2 shows how
the number of problems solved optimally depends on time
across all the domains for all versions of models and for both
search approaches.

There are several observations taken from this experi-
ment. First, heuristics are more beneficial for the iterative
deepening approach than for branch-and-bound. The expla-
nation is following – heuristics in iterative deepening help
to find quickly the level corresponding to the size of the
optimal plan while in branch-and-bound, heuristics do not
contribute to find the initial plan. When finding the size of
the optimal plan using iterative deepening, heuristics do not
help a lot to find the actual plan. So in iterative deepening,
heuristics play a significant role in the initial stage of find-
ing the proper depth level, but they are less important when
looking for the actual plan of a given length. Figure 3 shows
for a single problem how much time the iterative deepening
algorithm spends when looking for plans of a given length
(the time is cumulative). The heuristic helps the planner to
quickly skip the iterations where no plan exists (due to too

(a) factored representation

(b) structured representation

Figure 2: The number of problems solved within a given time using iterative deepening (left) and branch-and-bound (right).

strict plan-length bound) but then the heuristic deteriorates
and control knowledge helps more in the final stages of the
algorithm. In branch-and-bound, the best time to use heuris-
tic is completely opposite. Heuristics do not help when find-
ing the initial plan as there is no bound that they can use to
cutoff search branches. Nevertheless, as soon as some good
bound for the plan length is found then heuristics become
beneficial. In summary, heuristics are good to cutoff subop-
timal plans when strong bound is given.

The role of control knowledge seems to be less dependent
on the type of search approach. It almost always improved
runtime performance more than heuristics. The reason is that
control knowledge focuses more on finding a feasible plan
while trying to omit “in-efficient” plans. There was only one
exception in our test suite and this was the Visitall domain
where the used control knowledge actually degraded perfor-
mance. The reason was that control knowledge used expen-
sive computation (finding many shortest paths) but did not
cutoff many search branches. Though the proposed heuristic
was also based on shortest paths it was much efficient there.
The explanation could be that the heuristic used informa-
tion about the lengths of the shortest paths while the control
knowledge used less information (whether a shortest path
goes through a given node). This basically indicates useful
hint – if we have some information available, we should ex-
ploit it as much as possible.

Conclusions
The paper presented experimental comparison of various
techniques for modeling planning domains and brought
some interesting results in the area of comparing influence of

different modeling techniques (heuristics and control knowl-
edge) on planner’s performance depending on used search
techniques. The experiments clearly showed benefits of us-
ing structured representation, heuristics, and control knowl-
edge. It is known that heuristics and control knowledge im-
prove performance of planners (Haslum and Sholz 2003) but
so far there was no comparison across them. Also, there was
no attempt to exploit structured representation of states in
planning as the state-of-the-art planning techniques are dom-
inated by PDDL planners based on the factored representa-
tion.

The short conclusion is that if some useful information is
available, it should be encoded in the domain model. The
current trend in planning represented by International Plan-
ning Competitions can be characterized as “physics-only”
modeling, that is, the model encodes only what the actions
are doing but does not give any hints how the actions actu-
ally contribute to solve problems. The existing approaches
to encode such information, namely Hierarchical Task Net-
works (Nau et al. 2003) and control rules (Bacchus and Ka-
banza 2000; Kvarnström and Magnusson 2003), are hard to
grasp by users and in general there are no guidelines how to
design efficient domain models (neither for PDDL, nor for
HTN and control rules). There is a paper (Barták et al. 2015)
giving some modeling guidelines and demonstrating that Pi-
cat models are much smaller than models with control rules,
but it did not show how different modeling techniques con-
tribute to planner’s performance. In the current paper, we are
narrowing this gap by experimentally comparing these tech-
niques using four existing planning domains from IPC. One
may argue that more domains would give more conclusive

Figure 3: Relation between runtime and plan-length bound explored by iterative deepening for a single problem in the Depots
domain (left) and in the Nomystery domain (right).

results, but as the results for specific domains showed the
very same trends, we do not expect different conclusions if
more domains were involved. In other words, the presented
behavior depends more on quality of heuristics and control
knowledge rather than on planning domain.

The focus of this paper was more on manual modeling of
planning domains where the modeler has some knowledge
about how the actions are used to solve the problem. Note
that it does not mean that the modeler knows how to find
the optimal plan; search is still involved. Nevertheless, an
interesting open question is whether it is possible to auto-
matically deduce some of this extra knowledge from “plain”
(say PDDL) models. There are already some attempts in this
direction (Fox and Long 1999; Riddle et al. 2015) includ-
ing the learning track of IPC. We believe that it is important
to understand first how particular modeling techniques con-
tribute to performance, how they interact, and how they are
related to used planning approach, before attempting to au-
tomatically extract them.

Acknowledgements. Research is supported by the Czech
Science Foundation under the project P103-15-19877S and
by the Grant Agency of Charles University under the project
No. 241515.

References
Bacchus F. and Kabanza F. 2000. Using temporal logics to
express search control knowledge for planning. Artificial In-
telligence, 116(1-2):123–191.
Barták R. and Zhou N-F. 2014. Using tabled logic program-
ming to solve the Petrobras planning problem. Theory and
Practice of Logic Programming, 14(4-5):697–710.
Barták R.; Dovier A.; and Zhou N-F. 2015. On modeling
planning problems in tabled logic programming. In Proceed-
ings of the 17th International Symposium on Principles and
Practice of Declarative Programming – PPDP’15, 32–42.
Haslum O. and Scholz U. 2003. Domain knowledge in
planning: Representation and use. In ICAPS Workshop on
PDDL.
Howe A. E. and Dahlman E. 2002. A critical assessment

of benchmark comparison in planning. Journal of Artificial
Intelligence Research 17: 1–33.
Fikes R. E. and Nilsson N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2 (3-4): 189–208.
Fox M. and Long D. 1999. The detection and exploitation
of symmetry in planning problems. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJ-
CAI 1999), pp. 956–961.
Gelfond M. and Lifschitz V. 1998. Action languages. Elec-
tronic Transactions on AI, 3(16),193–210.
Ghallab M.; Nau D. S.; and Traverso P. 2004. Automated
Planning: Theory and Practice, Elsevier.
Kautz H. and Selman B. 1992. Planning as satisfiability. In
Proceedings of ECAI, 359–363.
Korf R. E. 1985. Depth-first iterative-deepening: An optimal
admissible tree search. Artificial Intelligence, 27(1), 97–109.
Kvarnström J. and Magnusson M. 2003. Talplanner in the
third international planning competition: Extensions and
control rules. J. Artificial Intelligence Research (JAIR),
20:343–377.
Land A. H. and Doig A. G. 1960. An automatic method
of solving discrete programming problems. Econometrica
28(3): 497–520.
McDermott D. 1998. The planning domain definition lan-
guage manual. CVC Report 98-003, Yale Computer Science
Report 1165.
Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter,
J. William Murdock, Dan Wu, and Fusun Yaman. 2003.
SHOP2: an HTN planning system. J. Artificial Intelligence
Research (JAIR), 20:379–404.
Nilsson N. J. 1984. Shakey The Robot, Technical Note 323.
AI Center, SRI International, 333 Ravenswood Ave., Menlo
Park, CA 94025.
Picat web site, http://picat-lang.org/, Accessed August 20,
2015.
Riddle P.; Barley M.; and Franco S. 2015. Automated Trans-
formation of Problem Representations. In Proceedings of

The 8th Annual Symposium on Combinatorial Search (SoCS
2015).
Russell R. and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Pearson.
Tange O. 2011. GNU Parallel - The Command-Line Power
Tool, The USENIX Magazine 36(1):42–47.
Vallati M.; Hutter F.; Chrpa L.; and McCluskey T.L. 2015.
On the Effective Configuration of Planning Domain Mod-
els. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence (IJCAI 2015), pp.
1704–1711, AAAI Press.
Zhou N.F. and Dovier A. 2013. A tabled Prolog program for
solving Sokoban. Fundamenta Informaticae, 124(4):561–
575.
Zhou N.F.; Sato T.; and Shen, Y.-D. 2008. Linear tabling
strategies and optimizations. Theory and Practice of Logic
Programming, 8(1), 81–109.
Zhou N.F. 2014. Combinatorial Search With Picat.
http://arxiv.org/abs/1405.2538.
Zhou N.F.; Barták R.; and Dovier A. 2015. Planning as
Tabled Logic Programming. Theory and Practice of Logic
Programming, 16(4-5): 543–558.

