
On the Goal Value of a Boolean Function

Eric Bach
Dept. of CS

University of Wisconsin
1210 W. Dayton St.
Madison, WI 53706

Lisa Hellerstein
Dept of CSE

NYU School of Engineering
2 Metrotech Center, 10th Floor

Brooklyn, NY 11201

Devorah Kletenik
Dept. of CIS

Brooklyn College
City University of New York

2900 Bedford Avenue
Brooklyn, NY 11210

Abstract

In recent work, Deshpande et al. introduced a new measure
of the complexity of a Boolean function (Deshpande, Heller-
stein, and Kletenik 2014). The measure is related to the max-
imum utility value of a certain monotone, submodular util-
ity function associated with the Boolean function. We call
this measure the “goal value” of the function. Proving that a
Boolean function has small goal value can yield new bounds
on the average-depth decision tree complexity of the function,
and new approximation algorithms for its sequential testing
problem. We present bounds on the goal values of arbitrary
and specific Boolean functions. We also compare the goal
value measure to other, previously studied, measures of the
complexity of Boolean functions.

Introduction
In recent work, Deshpande et al. introduced a new measure
of the complexity of a Boolean function (Deshpande, Heller-
stein, and Kletenik 2014). We call this measure the “goal
value” of the function.1 The measure is related to the maxi-
mum utility value of a certain monotone, submodular utility
function associated with the Boolean function.

Proving that a Boolean function f has small goal value
can lead to a good approximation algorithm for the Stochas-
tic Boolean Function Evaluation problem for f . Also, if
f has small goal value, it indicates a close relationship
between two other measures of the complexity of f , its
average-case decision tree complexity and its average-case
certificate complexity.

In this work, we explore properties of the goal value
measure. We review previous results on the measure. We
prove new bounds on the goal values of general and specific
Boolean functions. We also consider the related 1-goal value
and 0-goal value measures. Finally, for monotone Boolean
functions, we present a result relating goal value to other,
previously studied, measures of Boolean function complex-
ity.

We begin by presenting necessary definitions and explain-
ing the known connections between goal value, decision tree
complexity, and Boolean function evaluation. We then show
that the goal value of every Boolean function f is at least n,

1Deshpande et al. called it the Q-value. Since Q has no partic-
ular meaning, we have chosen to use a more intuitive name.

if f depends on all n of its input variables. We note that this
lower bound is tight for certain Boolean functions, such as
AND, OR and XOR functions. We also present goal value
bounds for Boolean k-of-n functions.

Deshpande et al. showed that the goal value of every
Boolean function f is at most ds(f) · cs(f), where ds(f)
is the minimum number of terms in a DNF formula for the
function, and cs(f) is the minimum number of clauses in a
CNF formula for the function.

It is well known and easy to show that ds(f) ≤ 2n−1 and
cs(f) ≤ 2n−1. Thus the goal value of f is upper-bounded
by 22n−2. We do not know how close goal value can come to
this upper bound, but we show that there is a function whose
goal value is approximately 2

n
2 . We also show that the goal

value of a read-once function is at least the maximum of
cs(f) and ds(f). Note that there is only a quadratic gap be-
tween this lower bound and the upper bound of ds(f)·cs(f).

We show that the polynomial threshold degree of a mono-
tone Boolean function is a lower bound on its goal value. It
can be a very weak lower bound, however, because threshold
degree is at most n, whereas goal value can be exponential
in n.

Terminology and Notation
Boolean function definitions: Let V = {x1, . . . , xn}. A
partial assignment is a vector b ∈ {0, 1, ∗}n. For partial as-
signments a, b ∈ {0, 1, ∗}n, a is an extension of b, written
a � b, if ai = bi for all bi 6= ∗. We also say that b is con-
tained in a.

Given Boolean function f : {0, 1}n → {0, 1}, a partial
assignment b ∈ {0, 1, ∗}n is a 0-certificate of f if f(a) = 0
for all a ∈ {0, 1}n such that a � b. It is a 1-certificate if
f(a) = 1 for all a ∈ {0, 1}n such that a � b. It is a cer-
tificate if it is either a 0-certificate or a 1-certificate. We say
that b contains a variable xi if bi 6= ∗. We will occasionally
treat a certificate b as being the set of variables xi such that
bi 6= ∗, together with the assignments given to them by b.
The size of a certificate b is the number of variables xi that
it contains. If b and b′ are certificates for x with b � b′, we
say that b′ is contained in b. A certificate b for f is minimal
if there is no certificate b′ of f , such that b′ 6= b and b � b′.

The certificate size of a Boolean function f is the maxi-
mum, over all x ∈ {0, 1}n, of the size of the smallest cer-
tificate contained in x. Given a distribution D on {0, 1}n,

the expected certificate size of f is the expected value, for
x drawn from D, of the size of the smallest certificate con-
tained in x.

It is well-known that every Boolean function f can be rep-
resented as a polynomial over GF(2). That is, either f is the
constant function f = 0, or f is computed by an expression
of the form T1 + T2 + . . .+ Tk for some k > 0, where each
Ti is the conjunction (i.e., AND) of the variables in some
subset of V , no two terms contain exactly the same subset
Si of variables, and addition is modulo 2. (If Si = ∅, then
Ti = 1.) This is sometimes called the ring-sum expansion of
the function. Each Boolean function has a unique such rep-
resentation, up to permutation of the terms Ti. A variable xi
appears in the GF(2) polynomial for Boolean function f iff
function f depends on variable xi.

For function f(x1, . . . , xn) defined on {0, 1}n, and b ∈
{0, 1, ∗}, the function fb induced on f by b is defined as
follows. Let Vb = {xi|bi = ∗}. Then Vb is the set of in-
put variables for function fb, and the domain of fb is the set
of assignments that assign 0 or 1 to each variable. For each
a in the domain, fb(a) = f(a\b), where a\b denotes the
assignment to V produced by setting the variables in Vb ac-
cording to a, and the variables in V −Vb according to b. For
k ∈ {0, 1}, we use fxi←k to denote the function induced
on f by the partial assignment setting xi to k, and all other
variables to ∗.

A k-of-n function is a Boolean function on n variables
whose output is 1 if and only if at least k of its input variables
are 1.

A read-once formula is a monotone Boolean formula over
the basis of AND and OR gates, whose inputs are all vari-
ables. We can view a read-once formula as a rooted tree with
the following properties:

1. The leaves are labeled with distinct variables from the set
{x1, . . . , xn}, for some n ≥ 1

2. Each internal node is labeled AND or OR
3. Each node labeled AND or OR gate has at least 2 children.

A maxterm of a monotone Boolean function
f(x1, . . . , xn) is the set of variables contained in a
minimal 0-certificate of f . (Equivalently, it is a set of
variables S such that setting the variables in S to 0 forces
f to 0, but this is not true of any proper subset of S.) A
minterm of f is the set of variables contained in a minimal
1-certificate of f . If F is a Boolean formula expressing a
monotone function, we say that a subset S of its variables is
a maxterm (minterm) of F iff S is a maxterm (minterm) of
the function is computes. The canonical DNF formula for
a non-constant monotone Boolean function f is a formula
of the form T1 ∨ T2 ∨ . . . ∨ Tk where k is the number of
minterms of f , and each Ti is the conjunction (AND) of
the variables in a distinct minterm of f . It is unique up to
permutation of terms.

A decision tree computing a Boolean function
f(x1, . . . , xn) is a binary tree where each binary node
is labeled by a variable in V , and each each leaf is labeled
either 0 or 1. The left child of an internal node labeled xi
corresponds to xi = 0, and the right child corresponds
to xi = 1. The tree computes f if for each x ∈ {0, 1}n,

the root-leaf path induced by x ends in a leaf whose
label is f(x). Given a decision tree T computing f , and
x ∈ {0, 1}n, let Depth(T, x) denote the number of internal
nodes on the root-leaf path in T induced by x. Then the
depth of T is the maximum value of Depth(T, x) for all
x ∈ {0, 1}n. Given a probability distribution on {0, 1}n, the
expected depth of T is the expected value of Depth(T, x),
when x is drawn from the distribution. The average depth
of T is its expected depth with respect to the uniform
distribution on {0, 1}n. The decision tree depth of Boolean
function f is the minimum depth of any decision tree
computing f . The expected decision tree depth of Boolean
function f , with respect to a distribution on {0, 1}n, is the
minimum expected depth of any decision tree computing f ,
with respect to that distribution.

The rank of a (binary) decision tree T is defined as fol-
lows (Ehrenfeucht and Haussler 1989): if T is a leaf, then
rank(T) = 0. Otherwise, let rank0 denote the rank of the
subtree rooted at the left child of the root of T and rank1
denote the rank of the subtree rooted at the right child of the
root of T . Then

rank(T) =

{
max{rank0, rank1} if rank0 6= rank1

rank0 + 1 otherwise

A k-decision list is a list of pairs (ti, vi) where ti is a term
(conjunction) of at most k literals and vi ∈ {0, 1}. The last
term ti is the empty term, which is equal to 1. A decision list
L defines a Boolean function such that for any assignment
x ∈ {0, 1}n, L(x) = vj where j is the minimum index such
that tj(x) = 1 (Rivest 1987).

We say that a Boolean function f is computed by a de-
gree d polynomial threshold function if there is a multivari-
ate polynomial p(x1, . . . , xn) of degree d, over the real num-
bers, such that for all x ∈ {0, 1}n, f(x) = sgn(p(x)), where
sgn(z) = 1 if z ≥ 0 and sgn(z) = 0 if z < 0. The polyno-
mial threshold degree of f is the minimum d such that f is
computed by a polynomial threshold function of degree d.

Submodularity Definitions: Let N = {1, . . . , n}. In
what follows, we assume that utility functions are integer-
valued. In the context of standard work on submodular-
ity, a utility function is a set function g : 2N → Z≥0.
Given S ⊆ N and j ∈ N , gS(j) denotes the quantity
g(S ∪ {j})− g(S).

We also use the term utility function to refer to a function
g : {0, 1, ∗}n → Z≥0 defined on partial assignments. For
l ∈ {0, 1, ∗}, the quantity bxi←l denotes the partial assign-
ment that is identical to b except that bi = l.

A utility function g : {0, 1, ∗}n → Z≥0 is monotone if
for b ∈ {0, 1, ∗}n, i ∈ N such that bi = ∗, and l ∈ {0, 1},
g(bxi←l)− g(b) ≥ 0; in other words, additional information
can not decrease utility. Utility function g is submodular if
for all b, b′ ∈ {0, 1, ∗}n and l ∈ {0, 1}, g(bxi←l) − g(b) ≥
g(b′xi←l) − g(b′) whenever b′ � b and bi = b′i = ∗. This is
a diminishing returns property.

We say that Q ≥ 0 is the goal value of g : {0, 1, ∗}n →
Z≥0 if g(b) = Q for all b ∈ {0, 1}n.

A goal function for a Boolean function f : {0, 1}n →
{0, 1} is a monotone, submodular function g : {0, 1, ∗}n →

Z≥0, with goal value Q, such that for all b ∈ {0, 1, ∗}n,
g(x) = Q iff b contains a certificate of f . We define the
goal value of f to be the minimum goal value of any goal
function g for f .

The goal value of f is clearly equal to the goal value of
the complement of the function f .

A 1-goal function for f is a monotone, submodular func-
tion g : {0, 1, ∗}n → Z≥0, such that for some constant
Q ≥ 0, g(b) = Q if b is a 1-certificate of f , and g(b) < Q
otherwise. We call Q the 1-goal value of g.

We define the 1-goal value of f to be the minimum goal
value of any 1-goal function for f . The definition of a 0-goal
function for f and the 0-goal value of f are analogous.

We denote the goal value, 1-goal value, and 0-goal value
of f by Γ(f), Γ1(f), and Γ0(f) respectively.

We use g(xi = `) to denote the value of g(b) for b ∈
{0, 1, ∗}n such that bi = `, and bj = ∗ for j 6= i.

Stochastic Boolean Function Evaluation
In the Stochastic Boolean Function Evaluation (SBFE)
problem, we are given a representation of a Boolean func-
tion f : {0, 1}n → {0, 1}, where the representation is
drawn from a fixed class of representations C. For exam-
ple, C might be the class of read-once formulas. We are
also given a vector of probabilities (p1, . . . , pn) ∈ (0, 1)n,
and a vector of costs (c1, . . . , cn) ∈ Zn≥0. We would like
to determine the value of f on an initially unknown input
x ∈ {0, 1}n, when cost ci must be paid to get the value
of xi, and each bit xi of x is equal to 1 with independent
probability pi. The problem is to find the best (adaptive)
order in which to acquire the bits of x, so as to minimize
the expected cost incurred before f(x) can be determined.
SBFE problems arise in diverse application areas, including
medical diagnosis, database query optimization, Operations
Research, and machine learning with attribute costs (Ibaraki
and Kameda 1984; Krishnamurthy, Boral, and Zaniolo 1986;
Deshpande and Hellerstein 2008; Srivastava et al. 2006;
Ünlüyurt 2004; Kaplan, Kushilevitz, and Mansour 2005).

Deshpande et al. observed that an instance of the SBFE
problem for a Boolean function f can be reduced to an in-
stance of a problem called Stochastic Submodular Set Cover
(SSSC), by constructing a goal function g for f (Deshpande,
Hellerstein, and Kletenik 2014). Golovin and Krause gave
an algorithm for the SSSC problem, called Adaptive Greedy,
that achieves an O(logQ) approximation, when given as
input a utility function g : {0, 1, ∗}n → Z≥0 with goal
value Q (Golovin and Krause 2011). Applying it to the
goal function g constructed for Boolean function f yields
an O(logQ) approximation for the SBFE problem for f .

Recall that ds(f) is the minimum number of terms in a
DNF formula for f , and cs(f) is the minimum number of
clauses in a CNF formula for f . Deshpande et al. gave a
generic method for constructing a goal function g for an
arbitrary Boolean function f , such that g has goal value
ds(f) · cs(f). Hence, by running Adaptive Greedy on g, the
SBFE problem for f can be approximated to within a fac-
tor of O(log(ds(f) · cs(f))) when f is given by its CNF
and DNF formulas (or by a Boolean decision tree). Desh-

pande et al. also showed that for certain Boolean functions,
Γ(f) can be exponential in n. In particular, they showed
that Γ(f) ≥ 2n/2 both for the function f(x1, . . . , xn) =
x1x2∨x3x4∨ . . . xn−1xn, and for a certain linear-threshold
function having coefficients of exponential magnitude. For
such functions, the approach of constructing a goal function
g for f , and then running Adaptive Greedy on g, does not
yield a good approximation algorithm for the SBFE prob-
lem for f . See (Deshpande, Hellerstein, and Kletenik 2014)
for further details.

Bounds on Decision Tree Depth
In (Deshpande, Hellerstein, and Kletenik 2013), it was
shown that the goal value of a Boolean function f could
be used to upper bound the expected depth of a decision
tree computing f , with respect to the uniform distribution
on {0, 1}n.

Let DT(f) denote the expected decision tree depth of
f , and CERT(f) denote the expected certificate size of f ,
where both expectations are with respect to the uniform dis-
tribution on {0, 1}n. It is easy to show that CERT(f) ≤
DT(f). Let g be a goal function for f whose goal value is
Γ(f). Under the uniform distribution, when run on g, the
Adaptive Greedy algorithm of Golovin and Krause outputs
a solution (corresponding to a decision tree) that is within a
factor of 2(ln Γ(f) + 1) of the expected certificate size of f .
It follows that

DT(f) ≤ (2 ln Γ(f) + 1)CERT(f).

Thus if Γ(f) is small, expected certificate size and ex-
pected depth are close to each other. However, Γ(f) can
be very large. In (Allen et al. 2014), it was shown that
the gap between DT(f) and CERT(f) can be exponential:
there is a function f such that for any constant 0 < ε < 1,
DT(f)

CERT(f) = Ω(2εCERT(f)). This stands in marked contrast to
results for worst-case depth of decision tree and worst-case
certificate size; it is known that the worst-case depth of a de-
cision tree is at most quadratic in the size of the worst-case
certificate (Buhrman and Wolf 1999).

Lower Bound on Goal Value
In this section, we seek to lower bound the goal value for all
Boolean functions. Let f : {0, 1}n → {0, 1} be a Boolean
function depending on all its variables.

We begin with the following lemma:
Lemma 1. Let f(x1, . . . , xn) be a Boolean function. Let
`, k ∈ {0, 1}. Let g be a goal function for f . If there is a
minimal certificate of f setting xi = `, then g(xi = `) −
g(∗, . . . , ∗) ≥ 1.

Similarly, if g′ is a k-goal function for f , and there is a
minimal k-certificate for f setting xi = `, which has size s,
then g′(xi = `) − g′(∗, . . . , ∗) ≥ 1. Further, if the size of
that certificate is s, then the goal value of g′ is at least s.

Proof. Let g be a goal function for f , and let Q be its goal
value. Let g′ be a k-goal function for f , and let Q′ be its
k-goal value. Let d be a minimal k-certificate for f . Thus
g(d) = Q and g′(d) = Q′.

Let s be the size of certificate d, and without loss of gener-
ality, assume that x1, . . . , xs are the variables contained in d.
Consider the sequence d0, d1, . . . , ds where d0 = (∗, . . . , ∗)
and di = (d1, d2, . . . , di, ∗, . . . , ∗) for 1 ≤ i ≤ s. Consider
a fixed i such that 1 ≤ i ≤ s. By monotonicity, g(di−1) ≤
g(di). Suppose g(di−1) = g(di). Let d̂ be the partial as-
signment that is obtained from ds by setting xi to ∗. Since
d is a minimal certificate for f , d̂ is not a certificate, and so
g(d̂) < Q, and thus g(d) − g(d̂) ≥ 1. Since d and d̂ differ
only in the assignment to xi, and d̂ � di−1, by submodular-
ity, g(di)− g(di−1) ≥ 1 and g(xi = di)− g(∗, . . . , ∗) ≥ 1.

The same argument shows that g′(di)− g′(di−1) ≥ 1 and
g′(xi = di)− g(∗, . . . , ∗) ≥ 1. From the first inequality, we
get that g′(d) ≥ s. The lemma follows.

The proof of the above lemma also shows that Γ(f) ≥ d,
where d is the size of a minimal certificate for f . But d ≤
n, and we will prove that Γ(f) ≥ n. First, we prove the
following lemma.
Lemma 2. Let f(x1, . . . , xn) be a Boolean function de-
pending on all n of its variables. Then there exists a variable
xi and a value ` ∈ {0, 1} such that the induced function
fxi←` depends on all n− 1 of its input variables.

Proof. Consider the GF(2) polynomial computing f . The
polynomial must contain all n variables, since it depends on
all of them.

For each xi, let T (xi) denote the set of terms of the GF(2)
polynomial which contain xi. Define a partial order on those
variables xi such that xi < xj in the partial order if T (xi) is
a proper subset of T (xj).

Now consider an xi such that T (xi) is a minimum ele-
ment in this partial order. We analyze several different cases:

Case 1: The variable xi appears in all non-constant terms
of the polynomial. In this case, setting xi to 1 produces a
polynomial that contains the remaining n− 1 variables, and
cannot be simplified (since it has no repeated terms). Thus
the induced function must depend on all those variables.

Case 2: The variable xi does not appear in all terms of
the polynomial, and there is no xi 6= xj such that T (xi) =
T (xj). In this case, setting xi to 0 just deletes all terms of
the polynomial containing xi, and the result is the polyno-
mial for the induced function that cannot be simplified. By
assumption, for each xj 6= xi, T (xi) 6= T (xj), and since
T (xi) is a minimum, there must be a term containing xj but
not xi. This term is in the polynomial that remains after set-
ting xi to 0, and so the function setting xi to 0 depends on
all remaining xj .

Case 3: The variable xi does not appear in all terms
of the polyomial, and there exists an xj 6= xi such that
T (xi) = T (xj). In this case, set xi to 1 in the polynomial.
The result does not have any repeated terms: if t was a term
containing xi in the original polynomial, then there cannot
be a term in the polynomial containing exactly the variables
in t that are not equal to xi, because then it would contain
xj , implying that T (xi) 6= T (xj). Thus the result of setting
xi to 1 is to produce a polynomial that is the same as the
original polynomial, except that xi is deleted from any terms
containing it (and no simplification is possible). Since all of

the variables appeared in the original polynomial, all of the
variables except xi appear in the resulting polynomial.

We now have the following theorem:

Theorem 1. Let f : {0, 1}n → {0, 1} be a Boolean func-
tion. If f depends on exactly n′ of its input variables, then
Γ(f) ≥ n′. Further, Γ1(f) + Γ0(f) ≥ n′ + 1.

Proof. We prove the theorem in the case that f depends on
all n of its input variables, so n′ = n. This is without loss
of generality, because if n′ < n, we can consider instead
the restriction of f to the variables on which it depends. It is
easy to verify that this causes no change in the values of Γ,
Γ1, and Γ0.

By repeated application of Lemma 2, it follows that there
exists a sequence of partial assignments, b0, b1, . . . , bn

′
in

{0, 1, ∗}n, such that b0 is the all-∗ assignment, bn has no ∗’s,
each bi+1 is an extension of bi produced by changing exactly
one ∗ to a non-∗ value, and the function f i that is induced
from f by partial assignment bi depends on all n − i of its
variables.

Without loss of generality, assume bi assigns values
in {0, 1} to variables xn−i+1, . . . , xn, and sets variables
x1, . . . , xn−i to ∗. Thus f i : {0, 1}n−i → {0, 1}.

Let g be a goal function for f . For i ∈ {1, . . . , n}, let
gi : {0, 1, ∗}n−i → Z≥0 be the function induced on g by
bi. Thus for a ∈ {0, 1, ∗}n−i, gi(a) = g(a\bi), where a\bi
denotes the assignment produced by setting the variables in
{x1, . . . , xn−i} according to a, and the remaining variables
of g according to bi. From the fact that g is a goal function
for f , it easily follows that gi is a goal function for f i, with
goal value equal to the goal value of g.

Let xn−i+1 ← `, where ` ∈ {0, 1}, be the one-variable
assignment that extends bi−1 to produce bi. Since f i−1 de-
pends on xn−i+1, there is an assignment b ∈ {0, 1}n−i+1

such that f i−1(bxn−i+1
← 0) 6= f i−1(bxn−i+1

← 1).
Hence there is a minimal 0-certificate or a minimal 1-
certificate for f i−1 setting xn−i+1 to `. Thus by Lemma 1,
gi−1(xn−i+1 = `) − gi−1(∗, . . . , ∗) ≥ 1, and hence
g(bi) − g(bi−1) ≥ 1. Thus the value of g increases by at
least 1 for each bi in the sequence b0, b1, . . . , bn, and so
g(xn) ≥ n. This proves that Γ(f) ≥ n.

We now need to prove that Γ1(f) + Γ0(f) ≥ n + 1. Let
g′ be a 1-goal function for f , and let g′′ be a 0-goal value
function for f . Considering the sequence b0, . . . , bn again,
the above argument, together with Lemma 1, shows that for
each i ∈ {1, . . . , n− 1}, g′(bi)− g′(bi−1) ≥ 1 or g′′(bi)−
g′′(bi−1) ≥ 1. Thus g′(bn−1) + g′′(bn−1) ≥ n− 1.

Either the assignment x1 = bn1 is in a 1-certificate for
fn−1, or in a 0-certificate (or both). Without loss of general-
ity, assume it is in a 1-certificate. Then assignment x1 = ¬bn1
is in a 0-certificate for gn−1. Let q′ be the goal value of g′
and q′′ be the goal value for g′′. Since bn−1 contains neither
a 1-certificate nor a 0-certificate for f , g′(bn−1) ≤ q′−1 and
g′′(bn−1) ≤ q′′−1. It follows that n−1 ≤ (q′−1)+(q′′−1),
and so q′ + q′′ ≥ n+ 1. The follows.

Furthermore, these bounds can be tight, as illustrated in
the following two propositions:

Proposition 1. The AND, OR, and XOR functions, and their
negations, have goal value n.

Proof. Their goal values must be at least n, by Theorem 1.
For AND, consider utility function g whose value equals n
on any partial assignment having at least one 0, and whose
value equals the number of 1’s otherwise. This is a goal func-
tion for AND, and there is a dual goal function for OR. For
XOR, consider the goal function whose value on a partial
assignment is equal to the number of variables set to 0 or
1.

Proposition 2. Let f : {0, 1}n → {0, 1} be a Boolean k-
of-n function. Then Γ1(f) = k and Γ0(f) = n− k + 1.

Proof. For any k-of-n function f , define the 1-goal function
g′ whose value on any subset of bits is just the minimum of
k and the number of bits set to 1. This 1-goal function has
goal value k, so Γ1(f) ≤ k and by Lemma 1, Γ1(f) ≥ k.
Similarly, define the 0-goal function g′′ whose value on any
subset of bits is the minimum of n − k + 1 and the number
of bits set to 0.

We can further analyze the goal value for k-of-n func-
tions:
Theorem 2. Let f : {0, 1}n → {0, 1} be a Boolean k-of-n
function. Then Γ(f) = k(n− k + 1).

Proof. Let g be a goal function for f with goal value Q.
Consider a minimal 1-certificate b for f . It has exactly k 1’s
and no 0’s. Since g(b) = Q it follows from the submodu-
larity and monotonicity of g that there must be at least one
index i1 such that bi1 = 1 and g({bi1}) ≥ 1

kQ. Let t1 =
g({bi1}). Thus g(b) − g({bi1}) = Q − t1. It follows again
from the monotonicity and submodularity of g that for some
index i2 6= i1 where bi2 = 1, g({bi1 , bi2}) ≥ t1 + 1

k−1 (Q−
t1). Since t1 ≥ 1

kQ, and t1 + 1
k−1 (Q− t1) = t1(1− 1

k−1)+
1

k−1Q, we get that g({bi1 , bi2}) ≥ 1
k (1 − 1

k−1)Q + 1
k−1Q

so g({bi1 , bi2}) ≥ Q(2
k). Settng t2 = g({bi1 , bi2}), we sim-

ilarly get i3 with g({bi1 , bi2 , bi3}) ≥ 3
kQ and so forth, until

we have g({bi1 , . . . , bik−1
}) ≥ k−1

k Q, where bi1 , . . . , bik−1

are k − 1 of the k bits of b that are set to 1. Let bik be the
remaining bit of b that is set to 1. Let c be the minimal 0-
certificate for f such that cik = 0, and further, ci = 0 for all
i where bi = ∗, and ci = ∗ for all other i. Let l = n− k+ 1,
which is the number of 0’s in c.

Let tk−1 = g({bi1 , . . . , bik−1
}), so tk−1 ≥ k−1

k Q. Let d
be the assignment such that dij = 1 for j ∈ {1, . . . , k − 1},
and di = 0 for all other i. Then g(d) = Q and g(d) −
g({bi1 , . . . , bik−1

}) = Q− tk−1. Let Q′ = Q− tk−1.
Let l = n − k + 1. It follows from an argument

similar to the one above that there are bits cj1 , . . . , cjl−1

equal to 0 such that g({bi1 , . . . , bik−1
, cj1 , . . . , cjl−1

}) ≥
tk−1 + l−1

l Q
′. Let d′ be the partial assignment such that

bi1 , . . . , bik−1
= 1, cj1 , . . . , cjl−1

= 0 and bi = ∗ for the
remaining one variable xi.

Thus we have g(d′) ≥ tk−1 + l−1
l Q

′ = tk−1 + l−1
l (Q−

tk−1) and so g(d′) ≥ tk−1(1− l−1
l) + l−1

l Q. Using the fact
that tk−1 ≥ k−1

k Q we get that g(d′) ≥ k−1
k (1 − l−1

l)Q +

l−1
l Q and so g(d′) ≥ kl−1

kl Q. Further, since d′ is neither a
0-certificate nor a 1-certificate for f , g(d′) < Q, and thus
g(d′) ≤ Q− 1. It follows that Q ≥ kl = k(n− k + 1).

Finally, it follows from previous work (see Lemma 3 in
the next section) that there exists a goal function g for f
with goal value exactly equal to kl = k(n− k + 1).

Upper Bound on Goal Value
We do not know the maximum possible goal value of a
Boolean function, if goal value is expressed as a function of
the number of variables, n. As previously mentioned, Desh-
pande et al. showed that f(x1, . . . , xn) = x1x2∨x3x4 . . .∨
xn−1xn has goal value 2.5n. A similar argument yields a
function with larger goal value.
Theorem 3. For n a multiple of 3, there is a Boolean func-
tion f(x1, . . . , xn) such that Γ(f) ≥ 3n/3 = 2αn where
α = log2 3

3 ≈ .528.

Proof. Let n be a multiple of 3, and let f(x1, . . . , xn) =
x1x2x3 ∨ x4x5x6 ∨ . . . ∨ xn−2xn−1xn.

Our proof is by induction on n. The statement is clearly
true for n = 3, because in this case f has a minimal 1-
certificate of size 3, and so its goal value is at least 3.

We now show is is true inductively for larger n. Let g be
a goal function for f , with goal value Q. Let b be the all 1’s
assignment to the variables in V . Clearly g({b1, b2, b3}) =
Q.

By the monotonicity and submodularity of g, there must
be a pair of those three bits for which the value of g is at
least 2

3Q. Assume without loss of generality it is b1 and b2 so
that g({b1, b2}) ≥ 2

3Q. By monotonicity, adding in x3 = 0

cannot decrease utility, so g({b1, b2, x3 = 0}) ≥ 2
3Q also.

Let t = g({b1, b2, x3 = 0}). Consider the induced func-
tion f ′ produced from f by setting x1 = 1, x2 = 1, and
x3 = 0. Inductively, this function has goal value at least
3(n−3)/3.

It follows that Q − t ≥ 3(n−3)/3, and hence Q ≥ t +
3(n−3)/3. Since t ≥ 2

3Q, we get that Q ≥ 3n/3.

The following is implicit in the work of Deshpande et al.
Lemma 3. (Deshpande, Hellerstein, and Kletenik 2014)
For any Boolean function f , Γ(f) ≤ Γ1(f) · Γ0(f)

Proof. The proof of the above proposition is constructive,
and is based on a standard “OR” construction used previ-
ously by (Guillory and Bilmes 2011). Let g1 be a 1-goal
function for f and g2 be a 0-goal function for f . Let Q1

and Q0 be the goal values for these functions. Then function
g(b) = (Q1 − g1(b))(Q2 − g0(b)) is a monotone, submod-
ular function where g(b) = Q1Q2 iff g1(b) = Q1(b) or
g0(b) = Q0(b). The lemma follows.

As shown in Proposition 1, for the AND function, Γ(f) =
n, and it is easy to show that Γ0(f) = 1 while Γ1(f) =
n. Therefore, for the AND (or the OR) function, we have
Γ(f) = Γ1(f) · Γ0(f).

In contrast, by Lemma 1 and Proposition 1, when f is the
XOR function, Γ(f) = Γ1(f) = Γ0(f) = n.

We have the following upper bound.

Lemma 4. Let f be a Boolean function that is not identi-
cally 1 or 0. Then for k ∈ {0, 1}, Γk(f) ≤ Γ(f).

Proof. Let g : {0, 1, ∗}n → Z≥0 be a goal function for
f , and let Q be its goal value. Without loss of generality,
assume k = 1. Let g1 : {0, 1, ∗}n → Z≥0 be such that for
b ∈ {0, 1, ∗}n, g1(b) = Q − 1 if b contains a 0-certificate
of f , and g1(b) = g(b) otherwise. Clearly g1(b) = Q iff
b contains a 1-certificate of f . Using the monotonicity and
submodularity of g, and the fact that any extension of a 0-
certificate is also a 0-certificate, it is straightforward to show
that g1 is monotone and submodular.

Goal Value of Read-Once Formulas
In this section, we discuss bounds on the goal value of func-
tions expressed by read-once formulas.

Given a function g : {0, 1, ∗}n → Z≥0, we say that g
gives no value to 0’s if for all b ∈ {0, 1, ∗}, g(b) = g(b′),
where b′ is the partial assignment produced from b by chang-
ing all 0’s in b to ∗’s. We say that g gives no value to 1’s if
the analogous property holds.

The following lemma will be useful.
Lemma 5. Let f be a monotone Boolean function. Then
there is a 1-goal function g for f that gives no value to 0’s,
whose goal value is Γ1(g). Similarly, there is a 0-goal func-
tion g for f that gives no value to 1’s, whose goal value is
Γ0(g).

Proof. We prove this for the 1-goal function; the proof is
symmetric for 0-goal function. Let g be a 1-goal utility func-
tion for f with 1-goal value Γ1(f). For b ∈ {0, 1, ∗}, let b′
be the partial assignment produced from b by changing all
0’s in b to ∗’s. Define a related utility function h such that
h(b) = g(b′). It is straightforward to verify that because f is
monotone, h is also a 1-goal utility function for f , with the
same 1-goal value as g, namely Γ1(f).

In what follows, if φ is a DNF formula, we use size(φ)
to denote the number of terms of φ. (If φ is the constant
formula 0 or 1, size(φ) = 0.)
Lemma 6. Let F be a read-once formula on variable set
V = {1, . . . , n}, and let f be the monotone Boolean func-
tion that it computes. Let φ be the canonical DNF formula
for f . Let h : 2V → Z≥0 be a monotone, submodular set
function, such that for some Q > 0, h(S) = Q if S contains
a maxterm of f , and h(S) < Q otherwise.

Then the following 2 properties hold:

i) For any variable xi ∈ V , h({xi}) ≥ number of terms of
φ containing xi

ii) h(V) ≥ size(φ).

Proof. We do induction on n. In the base case, n = 1. For-
mulaF then consists of a single node labeled x1 and φ = x1.
Since g is a 0-goal utility function, h(∅) < h({x1}), and
therefore h(V) = h({x1}) ≥ 1 = number of terms of φ
containing x1 = size(φ).

For the induction step, let k ≥ 0 and assume that the claim
is true for n = k. Suppose F has size n = k + 1.

We first prove (i). Let xi be an arbitrary variable of F .

root

...

OR

H H1
. . . Hk

Figure 1: xi is in one of the Hj

There are two cases.

Case 1: There is an ancestor of xi in F that is labeled OR
Let t be an ancestor of xi in F that is labeled OR. Let H

be a subtree of F that is rooted at a child of t, such that H
does not contain xi (that is, the path from t down to xi does
not go through H). See Figure 1.

Let S denote the variables in H . Because t is labeled OR,
and the terms of φ correspond to the minterms of f , if a term
of φ contains any variables from S, it cannot contain xi.

Let V ′ = V − S. Let F ′ denote the induced read-once
formula produced from F by setting the variables in H to 0.
Setting the variables in H removes the subtree H from F .
In order to produce a read-once formula in valid form, we
follow the following procedure: if after removing H , t has
only one child, t is deleted. If t had a parent, the remaining
child of t will become the child of the previous parent of t;
if t did not have a parent, the remaining child becomes the
new root.

Let φ′ be the canonical DNF formula for F ′. Formula φ′
is the formula produced from φ by deleting all terms con-
taining at least one variable in H . Since xi does not appear
in any of the deleted terms, the number of terms of φ that
contain xi is equal to the number of terms of φ′ that contain
xi.

We define a set function h′ : 2V
′ → Z≥0 where for all

subsets R ⊆ V ′, h′(R) = h(R ∪ S)− h(S). Function h′ is
clearly monotone and submodular. Since F is read-once and
the parent of subtreeH is labeled OR, setR ⊆ V ′ contains a
maxterm of F ′ iffR∪H contains a maxterm of F . It follows
that h′(R) = h′(V ′) = h(V) − h(S) if R is a maxterm of
h′, and h′(R) < h(V)− h(S) otherwise.

By the inductive hypothesis, h′({xi}) ≥ (the number of
terms of φ′ containing xi). Since the number of terms of φ′
containing xi is equal to the number of terms of φ containing
xi, h′({xi}) = h({xi}

⋃
S) − h(S) ≥ (number of terms

of φ containing xi). By the submodularity of h, h({xi}) ≥
h({xi} ∪ S) − h(S), so h({xi}) ≥ (number of terms of φ
containing xi).

Case 2: All ancestors of xi in F are labeled AND.

AND

xi H H1
. . . Hk

Figure 2: merging of the ANDs

Because all ancestors of xi are AND, we can merge the
ANDs, and without loss of generality, we can assume that
xi is a child of the root of F , which is labeled AND. See
illustration in Figure 2.

Let H be a subtree of F rooted at a sibling of xi, and let
S denote the variables in H . Let V ′ = V − {xi}.

Clearly {xi} is a maxterm of F , and every maxterm of H
is a maxterm of F . Consider the read-once formula induced
from F by setting xi to 1. (Note: if xi and H were the only
children of the root, then the resulting read-once formula is
just H .) Call it F ′. Since the root is AND, the canonical
DNF for f contains xi in every term. Let φ′ be the canonical
DNF for F ′. It follows that φ′ is produced from F by delet-
ing xi from each term of φ (and no redundant or subsumed
terms are created), and that size(φ) = size(φ′).

Consider the restriction of utility function h to the vari-
ables in V ′. Call the restriction h′. That is, h′ : 2V

′ → Z≥0
where for all R ⊆ V ′, h′(R) = h(R). Because h is mono-
tone and submodular, so is h′. Clearly anyR ⊆ V ′ is a max-
term of F ′ iff it is a maxterm of F . Also, since S is a subset
of V ′, and S contains maxterms ofH and hence ofF andF ′,
h′(V ′) = h(V). For R ⊆ V ′, h′(R) = h′(V ′) = h(V) if R
is a maxterm of F ′, else h′(R) < h(V). Since F ′ has fewer
variables than F , by the inductive hypothesis, h′(V ′) ≥
size(φ′) = size(φ). Finally, since {xi} is a maxterm of
F , and h is a 0-utility function for f , h(V) = h({xi}). We
thus have h({xi}) = size(φ) = number of terms containing
xi, since every term of φ contains xi.

This completes the proof of (i) for Case 2.
We now prove Property (ii) of the claim, in the general

case.
If every variable xi of F is such that {xi} is a maxterm

of F , then F is just the AND of all the variables, and (ii)
follows immediately from (i).

Suppose there is a variable xi of F where {xi} is not a
maxterm of F .

By (i), h({xi}) ≥ number of terms of φ containing xi. Let
F ′ be the read-once formula produced from F by setting
xi to 0. Since {xi} is not a maxterm of F , F ′ has at least
one variable. Let φ′ be the canonical DNF for F ′. Let V ′ =
V − {xi}. Let h′ : 2V

′ → Z≥0 where for R ⊆ V ′, h′(R) =
h(R∪{xi})− h({xi}). DNF formula φ′ is the formula you
get by deleting all terms in φ that contain xi. It is easy to
see that h′ satisfies the conditions of the claim, for formula
F ′. Therefore, by induction, h′(V ′) ≥ the number of terms
of φ′. Therefore, we have that h′(V ′) = h(V) − h({xi}),
so h(V) = h′(V ′) + h({xi}) ≥ (number of terms of φ
not containing xi) + (number of terms of φ containing xi) =

size(φ).

Theorem 4. If f is a Boolean function that is computed by
a read-once formula, then Γ0(f) ≥ ds(f), Γ1(f) ≥ cs(f),
and Γ(f) ≥ max{ds(f), cs(f)}.

Proof. Let φ be the canonical DNF formula for f . Let
size(φ) denote the number of terms in φ.

We prove that Γ0(f) ≥ ds(f). A dual argument shows
that Γ1(f) ≥ cs(f). It then follows from Lemma 4 that
Γ(f) ≥ max{ds(f), cs(f)}.

Let g be a 0-goal function for f , and let Q be its 0-goal
value. By Lemma 5, we may assume that g gives no value
to 1’s. We can therefore associate with g a utility function h
defined on the subsets of V , such that for S ⊆ V , h(S) =
g(b), where b is the partial assignment setting the variables
in S to 1, and all other variables to ∗. Clearly, h(S) = Q
iff set S contains a maxterm of h (that is, there is a subset
S′ ⊆ S such that S′ is a maxterm of f).

By Lemma 6, h(V) ≥ ds(f). Therefore, Q ≥ ds(f) and
hence Γ0(f) ≥ ds(f).

For a function f represented by a read-once formula, we
thus have max{ds(f), cs(f)} ≤ Γ(f) ≤ ds(f) · cs(f).
There is at most a quadratic gap between these upper and
lower bounds.

Goal Value and Other Measures of Boolean
Function Complexity

In this section, we relate the goal value of a monotone
Boolean function to decision tree rank and polynomial
threshold degree.

A decision tree computes a monotone submodular func-
tion h as follows: It has internal nodes labeled with variables
xi ∈ V . Each leaf of the tree is labeled with an element of
{0, 1 . . . , d}. In using the tree to compute the value of h on
input S ⊆ V , for each internal node labeled xi, you branch
right if xi is in S, and left if not.

Lemma 7. If h : 2V → {0, 1, . . . , d} is a monotone, sub-
modular set function, then there is a decision tree computing
h that has rank d.

Proof. It was shown in (Feldman, Kothari, and Vondrák
2013) that for submodular h (not necessarily monotone),
there is a decision tree computing h of rank at most 2d. Here
we give a better bound on rank when monotonicity holds.

The proof is by induction on n and d. It is clearly true if
n = 0 and d = 0, and in particular, it is true for n + d = 0.
Let s > 0, and assume true for n + d < s. We now show
true for n+ d = s.

If h is identically equal to a single value in {0, 1, . . . , d},
then the decision tree can consist of a single node labeled
with that value.

Otherwise, there exists a subset S ⊆ V such that h(S) 6=
h(∅). By monotonicity, h(S) > h(∅). Let S be such that
h(S) is maximized. If h(S) < d, then a decision tree of
rank at most d must exist by induction. Suppose h(S) = d.

By submodularity and monotonicity, there exits xi ∈ S
such that h({xi}) > h(∅), so h({xi}) ≥ 1. We con-
struct a decision tree for h by first putting xi in the root.
The left subtree of this tree needs to compute the function
h′ : 2V−{xi} → {0, 1, . . . , d} such that h′(S) = h(S) for
all S ⊆ V − {xi}. This is a function of subsets of n − 1
variables, and function h′ is monotone and submodular, and
thus by induction, can be computed by a tree of rank at most
d.

The right subtree needs to compute the function h′′ :
2V−{xi} → {0, 1, . . . , d} such that h′′(S) = h(S ∪ {xi})
for all S ⊆ V .

We now show that there is a decision tree computing h′′

that has rank at most d− 1. Consider the function ĥ defined
on 2V−{xi} such that for S ⊆ V , ĥ(S) = h(S ∪ {xi}) −
h({xi}) for all xi in S. Since h is monotone, so is ĥ. Further,
since h({xi}) ≥ 1 and h(S ∪ {xi}) ≤ d, it follows that ĥ
can be viewed as mapping to {0, 1, . . . , d − 1}. Function ĥ
is defined on n − 1 variables, and since it is monotone and
submodular, by induction, it can be computed by a tree of
rank at most d − 1. If modify the tree by adding the value
h({xi}) to the value in each leaf of the tree, the resulting
tree will compute h′′.

We have thus shown that we can construct a tree comput-
ing h such that the two subtrees of the root have rank d and
d− 1 respectively. Such a tree has rank d.

Theorem 5. Let f be a monotone Boolean function, and
let d = min{Γ1(f),Γ0(f)}. Then there is a decision tree of
rank at most d computing f . There is a polynomial-threshold
function of degree at most d computing f .

Proof. Consider a 1-goal function g for a monotone Boolean
function f , whose goal value is d. By Lemma 5, we can
assume that the value of g only increases on bits that are set
to 1, and stays the same on bits that are set to 0. Let V =
{x1, . . . , xn} Define a set function h : 2V → {0, . . . , d},
such that for all S ⊆ V , h(S) is equal to the value of g on
the partial assignment setting the variables in S to 1, and all
other variables to 0.

By Lemma 7, there is a decision tree computing h with
rank at most d. This same tree must compute the function g
(if at an internal node labeled xi, you branch left if xi = 0,
and right if xi = 1). For each leaf of the tree, change
the value of the leaf to 0 if it is labeled with a value in
0, . . . , d− 1, and to 1 if it is labeled with the value d. Since d
is the 1-goal value for g, on any assignment in 2V , the value
computed by the tree will be 1 iff the assignment contains
a 1-certificate for f . It follows that a tree of rank at most d
computes f .

By (Blum 1992), a function that can be computed by a
tree of rank d has an equivalent d-decision list. By a similar
argument to that used in (Ehrenfeucht et al. 1989), any func-
tion expressible by a d-decison list is also expressible as a
degree-d polynomial threshold function.

It follows from the above and from Lemma 4 that the goal
value of a monotone Boolean function is lower bounded by

its polynomial threshold degree.

Open Questions
There remain many open questions concerning the goal
value of Boolean functions. We list some here:

• As a function of n, what is the largest possible goal value
for a Boolean function?

• What is the expected goal value of a random Boolean
function?

• Are there any techniques for deriving good lower bounds
for Γ(f)?

• Is our lower bound on Γ(F) where F is a read-once for-
mula, actually tight?

• Is goal value polynomially related to some known mea-
sure of the complexity of a Boolean function?

References
Allen, S.; Hellerstein, L.; Kletenik, D.; and Ünlüyurt, T.
2014. Evaluation of DNF formulas. CoRR abs/1310.3673v3.
Blum, A. 1992. Rank-r decision trees are a subclass of
r-decision lists. Information Processing Letters 42(4):183–
185.
Buhrman, H., and Wolf, R. D. 1999. Complexity measures
and decision tree complexity: A survey. Theoretical Com-
puter Science 288:2002.
Deshpande, A., and Hellerstein, L. 2008. Flow algo-
rithms for parallel query optimization. In Proceedings
of the 24th International Conference on Data Engineering
(ICDE), 754–763.
Deshpande, A.; Hellerstein, L.; and Kletenik, D. 2013.
Approximation algorithms for stochastic boolean function
evaluation and stochastic submodular set cover. CoRR
abs/1303.0726v2.
Deshpande, A.; Hellerstein, L.; and Kletenik, D. 2014. Ap-
proximation algorithms for stochastic boolean function eval-
uation and stochastic submodular set cover. In SODA 2014,
1453–1466. SIAM.
Ehrenfeucht, A., and Haussler, D. 1989. Learning decision
trees from random examples. Information and Computation
82(3):231 – 246.
Ehrenfeucht, A.; Haussler, D.; Kearns, M.; and Valiant, L.
1989. A general lower bound on the number of exam-
ples needed for learning. Information and Computation
82(3):247–261.
Feldman, V.; Kothari, P.; and Vondrák, J. 2013. Represen-
tation, approximation and learning of submodular functions
using low-rank decision trees. In Conference on Learning
Theory, 711–740.
Golovin, D., and Krause, A. 2011. Adaptive submodular-
ity: Theory and applications in active learning and stochas-
tic optimization. Journal of Artificial Intelligence Research
42:427–486.
Guillory, A., and Bilmes, J. 2011. Active semi-supervised
learning using submodular functions. In UAI, 274–282.

Ibaraki, T., and Kameda, T. 1984. On the optimal nesting or-
der for computing n-relational joins. ACM Trans. Database
Syst.
Kaplan, H.; Kushilevitz, E.; and Mansour, Y. 2005. Learning
with attribute costs. In Symposium on the Theory of Com-
puting, 356–365.
Krishnamurthy, R.; Boral, H.; and Zaniolo, C. 1986. Op-
timization of nonrecursive queries. In Twelfth International
Conference on Very Large Data Bases (VLDB), 128–137.
Rivest, R. L. 1987. Learning decision lists. Machine learn-
ing 2(3):229–246.
Srivastava, U.; Munagala, K.; Widom, J.; and Motwani, R.
2006. Query optimization over web services. In Proceedings
of the 32nd International Conference on Very Large Data
Bases (VLDB), 355–366.
Ünlüyurt, T. 2004. Sequential testing of complex systems:
a review. Discrete Applied Mathematics 142(1-3):189–205.

