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Endre Boros† Ondřej Čepek‡ Kazuhisa Makino§

Introduction
A Boolean function of n variables is a mapping from {0, 1}n
to {0, 1}. Boolean functions naturally appear in many areas
of mathematics and computer science and constitute a key
concept in complexity theory. In this paper we shall study
an important problem connected to Boolean functions, a so
called Boolean minimization problem, which aims at find-
ing a shortest possible representation of a given Boolean
function. The formal statement of the Boolean minimization
problem (BM) of course depends on how the input function
is represented, and how the size of the output is measured.

One of the most common representations of Boolean
functions are conjunctive normal forms (CNFs). There are
two usual ways how to measure the size of a CNF: the num-
ber of clauses and the total number of literals (sum of clause
lengths). It is easy to see that BM is NP-hard if both in-
put and output is a CNF (for both measures of the size of
the output CNF). This is an easy consequence of the fact
that BM contains the CNF satisfiability problem (SAT) as
its special case (an unsatisfiable formula can be trivially rec-
ognized from its shortest CNF representation). In fact, BM
was shown to be in this case probably harder than SAT:
while SAT is NP-complete (i.e. Σp

1-complete (Cook 1971)),
BM is Σp

2-complete (Umans 2001) (see also the review pa-
per (Umans, Villa, and Sangiovanni-Vincentelli 2006) for
related results). It was also shown that BM is Σp

2-complete
when considering Boolean functions represented by general
formulas of constant depth as both the input and output for
BM (Buchfuhrer and Umans 2011).

Due to the above intractability result, it is reasonable to
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study BM for subclasses of Boolean functions for which
SAT (or more generally consistency testing, if the function
is not represented by a CNF) is solvable in polynomial time.
A good example of such a class is the class of Horn func-
tions. A CNF is Horn if every clause in it contains at most
one positive literal, and it is pure Horn (or definite Horn in
some literature) if every clause in it contains exactly one
positive literal. A Boolean function is (pure) Horn, if it ad-
mits a (pure) Horn CNF representation. Pure Horn functions
represent a very interesting concept which was extensively
studied in many areas of computer science and mathematics.
This concept appears as directed hypergraphs in graph the-
ory and combinatorics, as implicational systems in artificial
intelligence and database theory, and as lattices and closure
systems in algebra. This identical concept has traditionally
been studied within logic, combinatorics, database theory,
artificial intelligence, and algebra using different techniques,
different terminology, and often exploring similar questions
with somewhat different emphasis corresponding to the par-
ticular area. Nevertheless, in each of these areas the prob-
lem equivalent to BM, i.e. a problem of finding the shortest
representation was studied. For instance, one of the basic
results, the existence of the GD-basis, was discovered inde-
pendently and has different proofs in several of the above
mentioned areas.

There are several ways how to measure the size of pure
Horn function representation by a formula (or by a directed
hypergraph or by an implicational system). Five different
measures were introduced in (Ausiello, D’Atri, and Sacca
1986), including the most common one (the number of
clauses which is the same as the number of hyperarcs in
the hypergraph context). For four of these measures it is
NP-hard to find the shortest representation, the sole excep-
tion being the number of bodies (number of source sets in in
the hypergraph context and the number of rules in the impli-
cational system context), for which a polynomial time pro-
cedure exists to derive a minimum representation. The first
such algorithm appeared in database theory literature (Maier
1980). Different algorithms for the same task were then
independently discovered in hypergraph theory (Ausiello,
D’Atri, and Sacca 1986), and in the theory of closure sys-
tems (Guigues and Duquenne 1986).

It may be somewhat puzzling what makes the last mea-
sure so different (in terms of tractability of minimization)



from the other four. In this paper, we will try to provide
one possible explanation. While there is a gap between the
smallest number of clauses in any representation of a given
pure Horn function and a natural lower bound on this num-
ber (Boros et al. 2010; Cepek, Kučera, and Savický 2012;
Hellerstein and Kletenik 2013) (i.e. only a weak duality be-
tween upper and lower bounds exists), we shall show here
a strong duality between the smallest number of source sets
in any representation of a given pure Horn function and the
corresponding lower bound on this number.

There is an extensive literature studying Horn minimiza-
tion, that is the Boolean minimization problem where the
input is some representation of a Horn function. When the
objective is to minimize the number of clauses (hyperarcs),
the problem is NP-hard, as was first observed in (Ausiello,
D’Atri, and Sacca 1986) and later independently in (Ham-
mer and Kogan 1993). Both proofs construct high degree
clauses (with the degree proportional to the number of all
variables, where the degree of a clause is the number of liter-
als in it), which left open the question, what is the complex-
ity of clause minimization for pure Horn CNFs of a bounded
degree. It can be shown, that clause minimization stays
NP-hard even when the inputs are limited to cubic (degree
at most three) pure Horn CNFs (Boros, Čepek, and Kogan
1998). It should be also noted, that there exists a hierarchy of
tractable subclasses of Horn CNFs for which there are poly-
nomial time algorithms minimizing the number of clauses,
namely acyclic and quasi-acyclic Horn CNFs (Hammer and
Kogan 1995), and CQ Horn CNFs (Boros et al. 2009). There
are also few heuristic minimization algorithms for Horn
CNFs (Boros, Čepek, and Kogan 1998).

Recently, it was shown in (Bhattacharya et al. 2010;
Boros and Gruber 2014) that pure Horn minimization is not
only hard to solve exactly but even hard to approximate.
More precisely, (Bhattacharya et al. 2010) shows that this
problem is inapproximable within a factor 2log1−ε(n) assum-
ing NP ( DTIME(npolylog(n)), and (Boros and Gruber
2014) that it is inapproximable within a factor 2O(log1−o(1) n)

assuming P ( NP even when the input is restricted to 3-
CNFs with O(n1+ε) clauses, for some small ε > 0 . The
latter result of course implies, that pure Horn minimization
(both with respect to the number of clauses and the number
of literals) is NP-hard already for cubic CNFs.

In this paper we focus on pure Horn functions and on the
minimization of the number of its source sets. We derive
a new min-max relation that provide a new certificate for
optimality. We also provide a polynomial time algorithm to
derive a unique source minimal form (also known as the GD-
basis of the underlying pure Horn function, see (Guigues and
Duquenne 1986)) that reveals more structure then previous
algorithms. IN particular, it shows that any pure Horn func-
tion h has a unique integer k∗ = k∗(h) and unique pure
Horn majorants 1 = h0 ≥ h1 ≥ · · · ≥ hk

∗
= h that can

be obtained by our algorithm from any CNF representation
of h such that for any integer 0 < i < k∗ we also have
k∗(hi) = i, and obtain h1, ..., hi−1 as its majorants from any
CNF representation of hi. Furthermore, we derive some ad-

ditional properties of source-minimal CNF expressions, that
shed new light on the hard problem of clause minimization
and results in a potential decomposition of this hard problem
into smaller independent clause minimization problems.

For the sake of brevity we leave out most proofs for this
preliminary version.

Definitions
We denote by V the set of variables, set n = |V |, and con-
sider Boolean functions f : BV → B, where B = {0, 1}.
We shall write f ≤ g if for all X ∈ BV we have f(X) ≤
g(X). We denote by T(f) = {X ∈ BV | f(X) = 1} the
set of true points of f , and by F(f) = BV \ T(f) its set of
false points. Note that there is a one-to-one correspondence
between binary vectors and subsets. Namely, to a subset
S ⊆ V we can associate its characteristic vector χS ∈ BV ,
while to a binary vector X ∈ BV we can associate its sup-
port ON(X) = {i ∈ V | xi = 1} ⊆ V . Thus we have
ON(χS) = S for all S ⊆ V .

The components xi, i = 1, ..., n can be viewed as Boolean
variables (where truth values are represented by 0 and 1).
The logical negation of these variables will be denoted by
xi = 1 − xi, i = 1, ..., n, and called complemented vari-
ables. Since variables and their complements frequently
play a very symmetric role, we call them together as liter-
als, and introduce L = {x1, x1, x2, x2, ..., xn, xn}.

It is well known that every Boolean function can be rep-
resented by a CNF. A clause (an elementary disjunction
of literals) is Horn if at most one of its literals is an un-
complemented variable. A Boolean function is Horn, if it
can be represented by a Horn CNF, that is a conjunction of
Horn clauses. Implicates, prime implicates, pure-Horn, etc.

We consider pure-Horn functions f in CNF representa-
tion: I(f) denotes the set of Horn implicates of f , P(f) ⊆
I(f) denotes the set of prime implicates of f , and P∗(f) ⊆
I(f) is the resolution closure of P(f). In the sequel we as-
sume that we have a pure-Horn function f given, and will
relate all other definitions to it.

For a subset S of the variables V we denote by Ff (S) and
FΦ(S) the forward chaining closure of S, with respect to the
function f or DNF Φ.

For a subset S and variable u 6∈ S we write S → u to
denote the pure Horn clause C = u ∨

∨
v∈S v, where S is

called its body (or source set) and u is its head. For two
subsets A,B of the variables we write A→ B to denote the
conjunction (or set) of the clauses∧

u∈B
(A→ u) .

For a subset Φ ⊆ P∗(f) we shall view Φ both as a set and
as a conjunction of clauses. We also interpret any subset
Φ ⊆ P∗(f) as a function (represented by the corresponding
CNF.) Furthermore, by writing Φ = f , Φ = Ψ and Φ 6= Ψ
we mean that Φ represents the same function as f and Ψ, and
that it does not represent the same function as Ψ. This will
never cause confusion, since we do not need to compare in
the sequel by equality/non-equality subsets of implicates, as
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set families. We shall write Ψ ⊆ Φ if Ψ, as a set of clauses,
is a subset of Φ. We shall write Ψ ≤ Φ if the Boolean
functions defined by these conjunctions have this relation,
that is if Ψ(X) ≤ Φ(X) for all X ∈ BV .

Remark 0.1. It is easy to see that the forward chaining op-
erator satisfies the following properties. Assume that Ψ ⊆ Φ
and A ⊆ B ⊆ V .

FΦ(A) = FΦ(FΦ(A)) (1a)
FΦ(A) ⊆ FΦ(B) (1b)
FΨ(A) ⊆ FΦ(A) (1c)

Remark 0.2. If f is a pure-Horn function and Φ ⊆ P∗(f),
then f = Φ iff Ff (S) = FΦ(S) for all subsets S ⊆ V . Fur-
thermore S → u is an implicate of f (that is u ∨

∨
v∈S v ≥

f ) iff u ∈ Ff (S).

For an implicate C ≥ f we denote by body(C) its body
(as a set of variables), and by head(C) its head (as a single
variable.)

For a subset S ⊆ V of the variables we denote by CS =
S → (Ff (S) \ S) the set of implicates of f with body S.
For a CNF Φ = f representing the pure-Horn function f we
denote by ΦS the set of clauses C of Φ with body(C) = S.

A subset Φ ⊆ P∗(f) is called right-saturated, if for ev-
ery clause (S → u) ∈ Φ we have CS ⊆ Φ. A CNF Φ is
called body-irredundant if for every ∅ 6= ΦS the CNF (set
of clauses) Φ \ ΦS represents a function different from Φ.

A subset ∅ 6= E ⊆ P∗(f) is called essential, if whenever
the resolution of two clausesC1 andC2 belongs to E , at least
one of C1 and C2 must also belong to E ().

Remark 0.3. A subset Φ ⊆ P∗(f) represents f iff Φ∩E 6= ∅
for all essential sets E .

To a subset S ⊆ V of the variables we associate the fol-
lowing subset of implicates

ES = {C ≥ f | body(C) ⊆ S, head(C) 6∈ S}. (2)

Remark 0.4 ((Cepek, Kučera, and Savický 2012)). If ES 6=
∅, then ES is an essential set. Furthermore, for every essen-
tial set E there exists a subset S ⊆ V such that ∅ 6= ES ⊆ E .

For a CNF Φ ⊆ P∗(f) we denote by B(Φ) = {S ⊆ V |
∃u ∈ V s.t. S → u ∈ Φ} its set of bodies.

Let us introduce two measures for the size of a represen-
taton of f :

cnf(f) = min
Φ⊆P∗(f)

Φ=f

|Φ|

and
body(f) = min

Φ⊆P∗(f)
Φ=f

|B(Φ)|

Remark 0.5. By definition we have

body(f) ≤ cnf(f).

Let us define ess(f) as the maximum cardinality of a fam-
ily of pairwise disjoint essential sets.

Let us further call two essential sets E and E ′ body-
disjoint if there are no implicates S → u, S → v ∈ P∗(f)

such that S → u ∈ E and S → v ∈ E ′. Clearly, body-
disjoint essential sets are also disjoint, since u = v is possi-
ble in the above definition. We define bess(f) as the max-
imum cardinality of a family of pairwise body-disjoint es-
sential sets.
Remark 0.6. By Remarks 0.3 and 0.4 and by the above def-
initions we have

bess(f) ≤ ess(f) ≤ cnf(f).

Let us finally remark, that disjointness or body-
disjointness of essential sets of the form (2) can be tested
efficiently.
Remark 0.7. Given subsets P,Q ⊆ V , the essential sets EP
and EQ are disjoint iff Ff (P ∩Q) ⊆ P ∪Q. They are body-
disjoint iff either Ff (P ∩Q) ⊆ P or Ff (P ∩Q) ⊆ Q. Thus,
both properties can be tested in polynomial time in terms of
the size of a pure Horn CNF representing f .

As a consequence, lower bounds on the quantities ess(f)
and bess(f) have polynomial certificates. For instance, to
prove that K ≤ bess(f) for a pure Horn function f repre-
sented by a pure Horn CNF Φ, it is enough to exhibit subsets
Qi, i = 1, ...,K such that the essential sets EQi

, i = 1, ...,K
are pairwise body-disjoint. By Remark 0.7 the latter can be
verified in polynomial time in terms of K and the size of Φ.

Strong Duality
Our main result in this section is the min-max theorem
claiming that the maximum number of pairwise body-
disjoint essential sets is the same as the minimum number
of bodies one needs in a representation of the function.

Let us show first a weak dual relation between these quan-
tities.
Lemma 0.8 (Weak Duality). Let f be a pure Horn function,
Ei ⊆ P∗(f), i = 1, ...,m be an arbitrary family of pair-
wise body-disjoint essential sets, and let Φ ⊆ P∗(f) be an
arbitrary CNF representation of f . Then

m ≤ |B(Φ)|.
Consequently, we have

bess(f) ≤ body(f).

Proof. Since these essential sets are pairwise body-disjoint,
the sets B(Φ ∩ Ei) ⊆ B(Φ), i = 1, ...,m are also pairwise
disjoint nonempty sets, implying the first claim. Applying it
to a maximum cardinality family of pairwise body-disjoint
essential sets, and a CNF of f with the minimum number of
bodies in it, we obtain the second inequality.

Lemma 0.9. Let f be an arbitrary pure Horn function, set
B(Φ∗) = {S1, ..., Sm}, denote by Φ−i = Φ∗ \ CSi the trun-
cated CNF obtained by removing all clauses from Φ∗ with
body Si, and define

Pi = FΦ−i(Si)

as the forward chaining closure of Si with respect to the
above defined truncated CNF Φ−i, i = 1, ...,m. Then, the
essential sets EPi

, i = 1, ...,m are pairwise body disjoint
and nonempty.
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We leave out the proof of this claim for the sake of brevity.

Corollary 0.10. If Φ∗ is a body-irredundant right-saturated
CNF of a pure Horn function f , then

bess(f) ≥ |B(Φ∗)|.

Proof. Follows by Lemma 0.9.

Theorem 0.11 (Strong Duality). Let f be an arbitrary pure
Horn function. Then, we have

bess(f) = body(f).

Furthermore, any body-irredundant right-saturated CNF of
f is body minimum.

Proof. Consider an arbitrary body minimum pure Horn
CNF Φ representing f , that is with |B(Φ)| = body(f). Let
us add all necessary clauses to make it right-saturated, and
denote the obtained CNF by Φ∗. We have B(Φ∗) = B(Φ).
Since Φ is body minimum, both Φ and Φ∗ must be body-
irredundant. Thus, we can apply Corollary 0.10, and obtain

bess(f) ≥ |B(Φ∗)| = |B(Φ)| = body(f).

By Lemma 0.8 we have

body(f) ≥ bess(f).

Thus, bess(f) = body(f) is implied. Furthermore, by
Corollary 0.10 and by the definition of body(f) we have

bess(f) ≥ |B(Φ∗∗)| ≥ body(f)

for an arbitrary body-irredundant right-saturated CNF Φ∗∗,
implying by the above equality that Φ∗∗ is body minimum.

Corollary 0.12. For a pure Horn function f we have

bess(f) ≤ cnf(f) ≤ n · bess(f).

Proof. Consider an arbitrary irredundant Horn CNF Φ∗ of
f . Then by Theorem 0.11 we have

bess(f) = body(f) = |B(Φ∗)| ≤ cnf(f) ≤ |Φ∗| ≤ n·|B(Φ∗)| = n·bess(f).

The example

f(x1, ..., xn) =

n∧
i=1

xi

shows that the above inequalities are best possible, since
here we have bess(f) = 1 and cnf(f) = n.

Examples for non-uniqueness
Let us consider the following example, defining a pure Horn
function h in four variables. To simplify notation, we use
only the indices of these variables, and e.g., 12 means the
set of the first two variables.

1→ 2

2→ 1

13→ 24

23→ 14

It is easy to see that body(h) = bess(h) = 3, and in fact
both of the following CNF-s are body-irredundant and right-
saturated (that is body minimum representations of h.)

1→ 2 1→ 2

2→ 1 2→ 1

13→ 24 23→ 14

Thus, body minimum representations of a pure Horn func-
tion are not unique.

A polynomial algorithm to produce a (unique)
body minimal representation

In the rest of the paper we show that every pure Horn func-
tion has a unique irredundant and saturated (and hence body
minimum) representation that fulfills an additional property.
This unique body minimum representation can be obtained
in polynomial time from any input CNF of the Horn func-
tion.

In fact the unique CNF representations obtained by our al-
gorithm correspond to the so called GD-bases (see (Guigues
and Duquenne 1986)) of implication systems (which are
equivalent to the pure Horn CNF-s, as we emphasized from
the very beginning.) Maier (Maier 1980) proved that a body
minimum form can be obtained in polynomial time, in the
context of functional dependencies, which are in fact impli-
cation systems. Our algorithm here is different form the one
suggested by Maier, and its correctness and running time
analysis is quite simple, due to the fact that we use that ev-
ery implication system (pure Horn CNF) defines a unique
pure Horn function, and true/false assignments of this func-
tions have direct relations to the properties of subfamilies of
its implicates.

Our algorithm also shows that every pure Horn function h
defines a finite hierarchy of upper approximating pure Horn
functions

h = hk ≤ hk−1 · · · ≤ h1 ≤ h0 = 1

where k and the pure Horn functions hi, i = 0, ..., k are de-
termined uniquely by h. The unique GD-basis for each of
these functions can be obtained, as a side product of our al-
gorithm, in polynomial time, from any pure Horn CNF rep-
resentation of h.
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Given a pure Horn function h, an assignment x ∈ {0, 1}V
is a true point of h if h(x) = 1. We denote by T(h) ⊆
{0, 1}V the set of true points of h. For a vector x ∈ {0, 1}V
we denote byON(x) the set of variables which are assigned
value 1 in x, and denote byOFF (x) the set of variables that
receive value 0 in assignment x.

Remark 0.13. Given a pure Horn CNF Φ, representing the
pure Horn function h, we have

x ∈ T(h) ⇐⇒ FΦ(ON(x)) = ON(x).

Given a hypergraph S ⊆ 2V (of subsets of variables),
we denote by min’l S the subfamily consisting of all con-
tainmentwise minimal sets of S. For instance, if S =
{1, 2, 14, 23}, then min’l S = {1, 2}.

Now we are ready to describe a simple and efficient algo-
rithm that produces a unique body minimal representation
from an arbitrary Horn CNF.

Algorithm 1 BODYMIN(Φ)

Require: a pure Horn CNF Φ representing the pure Horn
function h.

Ensure: a unique body minimal representation Ψ of h.
1: Initialize i = 0, S0 = B(Φ), Ψ0 = 1, T 0 = ∅.
2: while Si 6= ∅ do
3: Si+1 =

{
FΨi(S) | S ∈ S0, Fh(S) ) FΨi(S)

}
4: T i+1 = min’l Si+1

5: Ψi+1 = Ψi ∧
∧

T∈T i+1 (T → (Fh(T ) \ T ))
6: i← i+ 1
7: end while
8: k∗ = i and Ψ = Ψk∗

Theorem 0.14. Let h be a pure Horn function. Then, al-
gorithm BodyMIN(Φ) outputs in polynomial time a unique
body minimal (irredundant and saturated) CNF Ψ of h, for
all CNF-s Φ representing h.

We leave out the proof of this claim for the sake of brevity.

Let us recall that by (Guigues and Duquenne 1986) every
implication system has a unique implication-minimum rep-
resentation, its so called GD-basis. Equivalently, every pure
Horn function has a unique body-minimum CNF represen-
tation, which we can also call its GD-basis. Let us show next
that Ψk∗ produced by BODYMIN(Φ) is this GD-basis of the
underlying pure Horn function h.

To do so we need to introduce the notion of left-
saturation.

Definition 0.15. A CNF Φ =
∧m

i=1Ai → Bi is left-
saturated if for all i 6= j the relation Ai ⊆ Aj implies
Bi ⊆ Aj .

It is easy to see that from any CNF Φ =
∧m

i=1Ai → Bi

representing the pure Horn function h we can obtain an
equivalent CNF Φ∗ of h that is left-saturated by the follow-
ing iterative steps.

If there are indices i 6= j such that Ai ⊆ Aj and variable
v ∈ Bi \Aj we update Φ as

Φ′ = ((Aj ∪ {v})→ Bj) ∧
m∧
i=1
i6=j

Ai → Bi.

It is easy to see that Φ′ is also a CNF of h. Furthermore,
the above steps can only be performed finitely many times,
and hence we obtain at the end a left-saturated CNF Φ∗

of h. On the surface this procedure may produce different
left-saturated CNF-s, depending on the order we pick the
indices. In fact this is not the case, under some mild condi-
tions, as we shall show shortly. Let us note first that unique-
ness certainly may not hold if we have Ai = Aj for some
i 6= j. For instance, if Φ = (1 → 23) ∧ (1 → 4), then
we can arrive to either Φ∗ = (14 → 23) ∧ (1 → 4) or
Φ∗∗ = (1 → 23) ∧ (123 → 4). To avoid such increase in
the number of bodies, we need to assume, as we did in the
past, that we have one implication for every body of Φ, that
is that Ai 6= Aj whenever i 6= j.

Let us also remark that there are several other definitions
for left-saturated forms in the literature. For instance in he
context of the closure system associated with h, the bodies
of a left-saturated CNF are also called pseudo-closed (see
e.g. (Wild 1994).)

There is also another left-closure operator considered e.g.,
in (Wild 1994; Arias and Balcázar 2009; 2011). Given a
CNF Φ of h, as above, let us call two bodies Ai and Aj

equivalent if FΦ(Ai) = FΦ(Aj), that is they have the same
forward chaining closure by h. Let us denote by Φ[Ai] the
sub-CNF of Φ consisting all implications the body of which
are equivalent in this sense with Ai. Then define for every
index i the left-closure of body Ai as A•i = FΦ\Φ[Ai](Ai),
that is as the forward chaining closure of Ai with respect to
the implications of Φ that have bodies not equivalent with
Ai.

One has to be a bit careful however by interchanging these
definitions and operators. Let us consider the following ex-
ample.

Φ Φ• Φ◦ Φ~

12→ 5 12346→ 5 123467→ 5

23→ 67 23→ 67 23→ 67 23→ 14567

1→ 46 1→ 46 1→ 46 1→ 346

45→ 3 45→ 3 45→ 3 45→ 3

46→ 3 46→ 3 46→ 3 46→ 3

67→ 1 67→ 1 67→ 1 67→ 134

In this example the first column represents the clause-
irredundant CNF Φ representing a pure Horn function h,
the second column shows the results of applying operator
A → A• to Φ, the third column is obtained by applying
Definition 0.15, while the last column shows the GD-basis
of h. In this example 12 and 23 are equivalent bodies (their
forward chaining closures include all variables.) Thus, when
obtaining (12)• we could use only the last four implications
of Φ. As we can see, Φ• does not satisfy Definition 0.15,
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since 23 → 7 leads out of the body 12346. The reasons for
these differences are that Φ is not right-saturated and body-
irredundant (and in particular, not body-minimum.) In fact it
will follow from some of our claims shown later below that
for CNF-s that are body-minimum the above problems and
differences will not arise.

Let us also note that if Φ is a right-saturated and body-
irredundant CNF, then in Definition 0.15 we could have used
( instead of ⊆.

With these notions in mind, let us show next that Ψk∗

is not only right-saturated and body-irredundant (body-
minimum) but it is also left-saturated e.g., according to Def-
inition 0.15.

Claim 0.16. If T, T ′ ∈ B(Ψk∗) are two distinct sets, such
that T ⊆ T ′, then we have Fh(T ) ( T ′.

Corollary 0.17. If Φ is a pure Horn CNF represent-
ing the pure Horn function h, then Ψk∗ , the output of
BODYMIN(Φ), is the GD-basis of h.

Body minimum forms and clause minimization
In what follows we derive a few additional properties for
body-minimum CNF representations, prove the claims we
made about left-saturation above, and obtain a decompo-
sition method for finding the cnf-minimum of a give pure
Horn function.

We shall consider a CNF Φ of the form

Φ =

m∧
i=1

Ai → Bi (3)

where we assume that Ai 6= Aj for i 6= j. We define for
1 ≤ j ≤ m

Φ−j =

m∧
i=1
i6=j

Ai → Bi (4)

and

Φ∗ =

m∧
i=1

Ai → Fh(Ai), (5)

where h is the pure Horn function represented by the CNF
Φ. Let us note hat Φ∗ is also a CNF of h, and it is right-
saturated. Let us also define

Φ◦ =

m∧
i=1

FΦ−i(Ai)→ Bi (6)

and note that Φ◦ is a left-saturated CNF. Let us add that
when writing Φ∗−j we mean first right-saturating Φ and then
deleting the implication with body Aj , that is

Φ∗−j =

m∧
i=1
i6=j

Ai → Fh(Ai).

Let us finally define

Φ~ =

m∧
i=1

FΦ∗−i
(Ai)→ Fh(Ai). (7)

Lemma 0.18. If Φ is body-minimum, then Φ~ = h.

Corollary 0.19. If Φ is body minimum, then Φ~ is the GD-
basis of h.

Lemma 0.20. If Φ is body-minimum, then for all i =
1, ...,m we have

FΦ−i
(Ai) = FΦ∗−i

(Ai).

Lemma 0.21. If Φ is body-minimum, then Φ◦ = h.

Claim 0.22. Assume that Φ =
∧m

i=1Ai → Bi is a
clause-irredundant pure Horn CNF representation of the
pure Horn function h, that is not body-minimum, and e.g.,
A1 → Fh(A1) is redundant in the right-saturated CNF
Φ∗ =

∧m
i=1Ai → Fh(Ai). Let v ∈ B1 be an arbitrary

variable. Then

(i) there exists an index j 6= 1 such that the clause Aj → v
is an implicate of h, and

(ii) the CNF

Φ̂ = (A1 → B1\{v})∧(Aj → Bj∪{v})∧
∧

2≤i≤m
i6=j

(Ai → Bi)

is another pure Horn CNF of h.

Note that the above head switching does not increase the
number of clauses and does not change the right-saturated
form Φ∗−1 = Φ̂∗−1. Consequently, the implications A1 →
Fh(A1) remain redundant in Φ̂∗. Thus we can repeat the
same operation with Φ ← Φ̂ and with the other variables in
B1, until A1 will disappear from Φ, implying by Theorem
0.11 the following corollary.

Corollary 0.23. Given an irredundant pure Horn CNF Φ
representing the pure Horn function h, we can derive in
polynomial time another pure Horn CNF Φ̂ of h such that

(a) |Φ̂| ≤ |Φ|,
(b) Φ̂ is body-minimum, and

(c) B(Φ̂) ⊆ B(Φ).

In particular, if we start with a cnf-minimum expression
of h, then we can conclude with the following claim.

Corollary 0.24. Every pure Horn function h has a pure
Horn CNF representation that is both cnf-minimum and
body-minimum.

Corollary 0.25. Every pure Horn function h has a cnf-
minimum representation that has the same bodies as its GD-
basis.

Proof. Follows by Corollary 0.24, and Lemmas 0.20 and
0.21.

Based on the above and on our algorithm we show next
that the problem of finding a cnf-minimum representation
for a given pure Horn CNF Φ, can be decomposed into
smaller problems typically.
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Let us consider a pure Horn function h and its unique GD-
basis Φ~, as produced by algorithm BODYMIN(Φ)

Φ~ =

k∗∧
`=1

∧
T∈T `

T → Fh(T ). (8)

According to Corollary 0.25 the problem of finding a cnf-
minimum representation of h can equivalently be viewed as
the poblem of finding subsets B(T ) ⊆ Fh(T ) for all T ∈
B(Φ~) =

⋃k∗

`=1 T ` such that the CNF

Ψ =

k∗∧
`=1

∧
T∈T `

T → B(T ). (9)

represents h and
∑

T∈B(Φ~) |B(T )| is as small as possible.
We shall show below that based on the properties of the GD-
basis we showed earlier the above problem can further be
decomposed into many smaller, independent subproblems
of the same type.

Let us introduce

Π` =
∧

T∈T `

T → Fh(T )

and denote by g` the pure Horn function represented by Π`,
for ` = 1, 2, ..., k∗. Note that we have

Ψk =

k∧
`=1

Π`

for the majorizing sub-CNF-s defined in BODYMIN(Φ).

Lemma 0.26. Assume that Ψ in (9) represents the pure
Horn function h. Then for every ` = 1, ..., k∗ the CNF

Σ` =
∧

T∈T `

T → B(T )

represents g`.

This immediately imply the following

Corollary 0.27. If Ψ in (9) is a cnf-minimum representation
of h, then Σ` are cnf-minimum representations of g` = Π`

for all ` = 1, ..., k∗. Conversely, if Σ` are cnf-minimum
representations of g` for all ` = 1, ..., k∗, then Ψ is a cnf-
minimum representation of h.
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