
Knowledge compilation from DNF to switch-list representations.

Ondřej Čepek∗ and Radek Hušek†
Charles University in Prague, Faculty of Mathematics and Physics,

Malostranské nám. 25, 118 00 Praha 1, Czech Republic

Abstract

In this short note we will present a less com-
mon way how to represent a Boolean function,
namely a representation by switch-list. There are
two problems connected to such representation:
(1) a knowledge compilation problem, i.e. a prob-
lem of transforming a given representation of a
Boolean function (e.g. a DNF, CNF, BDD ...) into
a switch-listl representation, and (2) a knowledge
compression problem, i.e. a problem of finding
the most compact switch-list representation among
those which represent the same function. We will
summarize known results about these two prob-
lems and present a new one about the compilation
problem.

Introduction
A Boolean function of n variables is a mapping from
{0, 1}n to {0, 1}. This concept naturally appears in
many areas of mathematics and computer science.
There are many different ways in which a Boolean func-
tion may be represented. Common representations in-
clude truth tables (with 2n rows where a function value
is explicitly given for every input vector), various types
of Boolean formulas (including CNF and DNF repre-
sentations), binary decision diagrams (BDDs), ordered
binary decision diagrams (OBDDs), and Boolean cir-
cuits.

In this paper we shall study a less common but
quite interesting representations of Boolean functions,
namely the representation by intervals and a closely re-
lated representation by switch-lists. Let f be a Boolean
function and let us fix some order of its n variables. The
input binary vectors can be now thought of as binary
numbers (with bits in the prescribed order) ranging form
0 to 2n− 1. An interval representation is then an abbre-
viated truth table representation, where instead of writ-
ing out all the input vectors (binary numbers) with their
∗Email address: ondrej.cepek@mff.cuni.cz (correspond-

ing author)
†Email address: husek@iuuk.mff.cuni.cz

function values, we write out only those binary num-
bers x for which f(x) = 1 (x is a truepoint of f) and
simultaneously f(x−1) = 0 (x−1 is a falsepoint of f)
and those binary numbers y for which f(y) = 1 (y is a
truepoint of f) and simultaneously f(y+ 1) = 0 (y+ 1
is a falsepoint of f). Thus the function is represented
by such pairs [x, y] of integers, each pair specifying one
interval of truepoints. Note that x = y for those pairs
which represent an interval with a single truepoint.

If the number of intervals is small, such a representa-
tion may be very concise (O(n) for a constant number
of intervals), which may be for some functions much
shorter than any of the commonly used standard repre-
sentations (truth table, Boolean formula, BDD, circuit).
A task of transforming one of the standard representa-
tions into an interval representation or vice versa can
be classified as a knowledge compilation problem (for a
review paper on knowledge compilation see (Darwiche
and Marquis 2002)).

Note here, however, that changing the order of vari-
ables may dramatically change the number of truepoint
intervals - it is easy to construct functions with a single
truepoint interval under one permutation of variables
and Ω(2n) truepoint intervals under another permuta-
tion. Hence the length of the interval representation may
be O(n) for one permutation of variables and Ω(n2n)
for another permutation. On the other hand, there exist
Boolean functions (e.g. a parity function), where listing
all truepoint intervals is asymptotically as space con-
suming as writing out the full truth table (i.e. Ω(n2n))
regardless of the chosen variable order.

The first knowledge compilation problem involving
interval representations was studied in (Schieber, Geist,
and Zaks 2005), where the input was considered to
be a function represented by a single interval (two n-
bit numbers x, y) and the output was a DNF repre-
senting the same Boolean function f on n variables,
i.e. a function which is true exactly on binary vectors
(numbers) from the interval [x, y]. This problem orig-
inated from the field of automatic generation of test
patterns for hardware verification (Lewin et al. 1995;

Huang and Cheng 1999). In fact, the paper (Schieber,
Geist, and Zaks 2005) achieves more than just finding
some DNF representation of the input 1-interval func-
tion - it finds in polynomial time the shortest such DNF,
where ”shortest” means a DNF with the least number of
terms. Thus (Schieber, Geist, and Zaks 2005) combines
a knowledge compilation problem (transforming an in-
terval representation into a DNF representaton) with a
knowledge compression problem (finding the shortest
DNF representation).

In (Čepek, Kronus, and Kučera 2008) the reverse
knowledge compilation problem was considered. Given
a DNF, decide whether it can be represented by a sin-
gle interval of truepoints with respect to some permu-
tation of variables (and in the affirmative case output
the permutation and the two n-bit numbers defining the
interval). This problem can be easily shown to be co-
NP hard in general (it contains tautology testing for
DNFs as a subproblem), but was shown in (Čepek, Kro-
nus, and Kučera 2008) to be polynomially solvable for
“tractable” classes of DNFs (where “tractable” means
that DNF falsifiability can be decided in polynomial
time for the inputs from the given class). The algorithm
presented in (Čepek, Kronus, and Kučera 2008) runs in
O(n`f(n, `)) time, where n is the number of variables
and ` the total number of literals in the input DNF, while
f(n, `) is the time complexity of falsifiability testing on
a DNF on at most n variables with at most at most ` to-
tal literals. This algorithm serves as a recognition algo-
rithm for 1-interval functions given by tractable DNFs.
This result was later extended in (Kronus and Čepek
2008) to monotone 2-interval functions, where an O(`)
recognition algorithm for the mentioned class was de-
signed.

It is interesting to note that the combination of results
from (Čepek, Kronus, and Kučera 2008) and (Schieber,
Geist, and Zaks 2005) gives a polynomial time mini-
mization (optimal compression) algorithm for the class
of 1-interval functons given by tractable DNFs, or in
other words, for the 1-interval subclass of functions in-
side any tractable class of functions. DNF minimiza-
tion (optimal compression) is a notoriously hard prob-
lem. It was shown to be Σp2-complete (Umans 2001)
when there is no restriction on the input DNF (see
also the review paper (Umans, Villa, and Sangiovanni-
Vincentelli 2006) for related results). It is also long
known that this problem is NP-hard already for some
tractable classes of DNFs - maybe the best known ex-
ample is the class of Horn DNFs (a DNF is Horn if ev-
ery term in it contains at most one negative literal) for
which the NP-hardness was proved in (Ausiello, D’Atri,
and Sacca 1986; Hammer and Kogan 1993) and the
same result for cubic Horn DNFs in (Boros, Čepek, and
Kučera 2013). There exists a hierarchy of subclasses of
Horn CNFs for which there are polynomial time mini-

mization algorithms, namely acyclic and quasi-acyclic
Horn CNFs (Hammer and Kogan 1995), and CQ Horn
CNFs (Boros et al. 2009). There are also few heuristic
minimization algorithms for Horn CNFs (Boros, Čepek,
and Kogan 1998). Suppose we are given a Horn DNF.
We can test in polynomial time using the algorithm
from (Čepek, Kronus, and Kučera 2008) (or the cur-
rent paper) whether it represents a 1-interval function
and then (in the affirmative case) use the algorithm
from (Schieber, Geist, and Zaks 2005) to construct a
minimum DNF representing the same function as the
input DNF. Thus we have a minimization algorithm
for 1-interval Horn DNFs. It is an interesting research
question in what relation (with respect to inclusion) is
this class with respect to the already known hierarchy
of polynomial time compressible subclasses of Horn
DNFs (acyclic Horn, quasi-acyclic Horn, and CQ-Horn
DNFs).

In the present paper we generalize the knowledge
compilation part of (Čepek, Kronus, and Kučera 2008)
and (Kronus and Čepek 2008). Given a DNF from a
tractable class of DNFs we show how to list all inter-
vals of truepoints with respect to a fixed permutation of
variables (i.e. compile a DNF into an interval represen-
tation) in polynomial time with respect to the size of the
input DNF and the number of output intervals.

In fact, in the present paper we shall not consider in-
tervals of truepoints of the given function f . Instead,
we shall consider switches, i.e. those vectors x such
that f(x − 1) 6= f(x). This is of course an equivalent
problem because the list of intervals can be easily ob-
tained from the list of switches (and the function values
f(0, 0, . . . , 0) and f(1, 1, . . . , 1)), and vice versa.

Preliminaries
A Boolean function, or a function in short, is a mapping
f : {0, 1}n 7→ {0, 1}, where x ∈ {0, 1}n is called a
Boolean vector (a vector in short). When the order of
bits in vector x is fixed, we shall also interpret x as the
corresponding binary number. Propositional variables
x1, . . . , xn and their negations x1, . . . , xn are called lit-
erals (positive and negative literals respectively). An el-
ementary conjunction of literals

t =
∧
i∈I

xi ∧
∧
j∈J

xj (1)

is called a term, if every propositional variable appears
in it at most once, i.e. if I ∩ J = ∅. A disjunctive nor-
mal form (or DNF) is a disjunction of terms. It is a well
known fact, that every Boolean function can be repre-
sented by a DNF (typically by many different ones).
Two DNFs F and F ′ are called logically equivalent
(which is denoted by F ≡ F ′) if they represent the
same function.

For a DNF F and a term t we denote by t ∈ F the
fact, that t is contained inF . Similarly, for a term t and a

2

literal x we denote by x ∈ t the fact, that x is contained
in t. Thus we will treat DNFs both as disjunctions of
terms and as sets of terms, and terms both as conjunc-
tions of literals and as sets of literals, depending on the
context. In the subsequent text the ”∧” sign in elemen-
tary conjunctions (terms) will be frequently omitted (we
shall write xyz instead of x∧y∧z). The set of variables
appearing in a DNF F will be denoted by Var(F). For
a function f represented by a DNF F , variable x and
value a ∈ {0, 1} we will denote by f [x := a] the sub-
function of f obtained by substituting the value a for
variable x in f , and by F [x := a] the DNF obtained by
substituting the value a for variable x in F (of course
F [x := a] is a DNF representation of f [x := a]).

The DNF version of the satisfiability problem (usu-
ally called the falsifiability problem) is defined as fol-
lows: given a DNF F , does there exist an assignment of
truth values to the variables which makes F evaluate to
0?

Given Boolean functions f and g on the same set of
variables, we denote by f ≤ g the fact that g is satisfied
for any assignment of values to the variables for which
f is satisfied. Hence, for example, if a term t consists of
a subset of literals which constitute term t′ then t′ ≤ t
(and in such a case we say that term t absorbs term t′).
For every term t which constitutes a term in a DNF F it
holds that t ≤ F since when t = 1 for some evaluation
of variables then for the same evaluation F = 1 holds.
We call a term t an implicant of a DNF F , if t ≤ F .
Hence every term t ∈ F is an implicant of F . We call t
a prime implicant, if t is an implicant of F and there is
no implicant t′ 6= t ofF , for which t ≤ t′ ≤ F . We call
DNF F prime, if it consists of only prime implicants. A
prime implicant of F is called essential if it appears in
every prime DNF logically equivalent toF . A DNFF is
called essential if it contains all its essential implicants.

It is a well known fact, that if F belongs to some
class of DNFs, for which we can solve the falsifiability
problem in polynomial time and which is closed under
partial assignment (we shall call such classes tractable),
then we can test in polynomial time for a term t and a
DNF F , whether t is an implicant of F . To see this,
observe that given a term t = x1 . . . xlpy1 . . . yln , t is
an implicant of f if and only if F [x1 := 1, . . . , xlp :=
1, y1 := 0, . . . , yln := 0] is not falsifiable (there is no
assignment to the remaining variables which makes the
DNF evaluate to 0). This simple property suffices for
any DNF from a tractable class to be modified into a
logically equivalent prime DNF (and hence also essen-
tial DNF) in polynomial time (by checking whether sub-
terms of the current terms are implicants of the given
DNF). See (Čepek, Kučera, and Savický 2012) for de-
tails on how this procedure works. In the subsequent
text we shall denote by p(n, `) the time needed to trans-
form a DNF with at most n variables of total length at
most ` into a logically equivalent essential DNF. The

above discussion implies that p(n, `) is polynomial in n
and ` for tractable classes of DNFs.

We say, that two terms t1 and t2 conflict in a vari-
able x, if t1 contains literal x and t2 contains literal x.
Two terms t1 and t2 have a consensus, if they conflict
in exactly one variable. If t1 = Ax and t2 = Bx, where
A,B are two sets of literals and x is the only variable,
in which t1 and t2 have conflict, we call a term t = AB
a consensus of terms t1 and t2. It is a well known fact,
that a consensus of two implicates of a DNF F (or of a
function f) is again an implicate of F (or f).

Compiling a DNF into an interval
representation

In this section we present an algorithm that lists all
switches (in increasing order) of a given DNF under
a given permutation of variables. This is a knowledge
compilation task for a fixed permutation of variables.
There is an obvious way how to change a list of switches
into a list of truepoint intervals in linear time (with
respect to the length of the input list) so listing all
switches achieves the announced goal of compiling into
an interval representation.
Definition 1. Fix a Boolean function f . We say that
variable x ∈ Var(f) is simple1 if either f [x := 0] or
f [x := 1] is a constant function. We denote Simp(f)
set of all simple variables of f .

The notion of a simple variable is important in the
switch listing algorithm because branching on a sim-
ple variable saves time that the algorithm would other-
wise spend on transforming the DNFs in both branches
into an essential form. To see how this works we need
two simple lemmas. The first one gives us a way how to
quickly recognize simple variables in an essential DNF,
and the second one states that a DNF of subfunction
obtained by assigning a value to a simple variable in an
essential DNF is again essential (and thus no transfor-
mation is needed).
Lemma 2 (About essential DNFs). Let F be a DNF
and x ∈ Var(F). Then:

• F [x := 0] ≡ 0⇔ (∀t ∈ F)(x ∈ t)
• F [x := 1] ≡ 0⇔ (∀t ∈ F)(x ∈ t)
Moreover if F is non-constant and essential:

• F [x := 0] ≡ 1⇔ {x} ∈ F
• F [x := 1] ≡ 1⇔ {x} ∈ F

Proof. The first two items hold trivially for every DNF
and so do the implications {x} ∈ F ⇒ F [x := 1] ≡
1 and {x} ∈ F ⇒ F [x := 0] ≡ 1. Thus the only
interesting part of the proof is the implication F [x :=
1] ≡ 1 ⇒ {x} ∈ F and its analogy for x := 0 for
non-constant and essential F . To prove this implication

1 Or that f is simple in x.

3

it suffices to show that if linear term t is an implicant of
a non-constant Boolean function f then t is its essential
implicant.

Without a loss of generality let us assume t = {x}
(the case t = {x} is similar). Since f is not a constant
function, empty term is not its implicant so t is a prime
implicant of f . Moreover no other prime implicant t′
contains x (because then t absorbs t′) or x (because
then the consensus of t and t′ which is an implicant of
F absorbs t′). Now assume that t is not an essential im-
plicant. Then there is a prime DNF F ′ representing f
which doesn’t contain the variable x. It means that f is
independent of x which together with f [x := 1] ≡ 1
contradicts the assumed non-constantness of f .

Lemma 3 (About an assignment of a simple variable).
Let F be an essential DNF which is simple in variable
x. Then both F [x := 0] and F [x := 1] are essential
DNFs of the corresponding subfunctions.

Proof. Let a ∈ {0, 1}. If F [x := a] is trivial, it is also
essential. Let F [x := a] be a nontrivial function. Due
to Lemma 2 it suffices to distinguish two cases: either x
(or x) is a universal literal in F or x (or x) is linear term
in F .

The universal literal case: without a loss of generality
we may assume that x (and not x) is a universal literal
which means that a = 1 in this case. We can transform
any prime DNF representing F into prime DNF repre-
senting F [x := 1] by removing x from all the terms and
vice versa.2 Therefore essential implicants ofF [x := 1]
are exactly essential implicants of F after removing lit-
eral x from them. Hence F [x := 1] is essential.

The linear term case: without a loss of generality we
may assume that the linear term is x which means that
a = 0. We know that x is a prime implicant of F and
no other prime implicant contains variable x. Therefore
we can transform prime DNF representing F into pri-
mary DNF representing F [x := 0] by removing term
x (and vice versa). It means that essential implicants of
F [x := 0] are all essential implicants of F except x.
Hence F [x := 0] is essential.

Now we are ready to present the switch-listing algo-
rithm. The algorithm works recursively. First it trans-
forms F into an essential form if it is not essential
yet.3 Then it checks whether F is constant. If F is
non-constant, the algorithm selects the first variable x
in the current permutation π and considers the sub-
functions F [x := 0] and F [x := 1] under the per-
mutation σ of the remaining variables, which is ob-

2 We know that x is universal literal in any DNF repre-
senting F because of Lemma 2.

3 The algorithm always does the transformation when
called by user (before the recursion is invoked) and during
the recursive calls it passes the information about the need of
the transformation in a hidden parameter.

1 Function SwitchSet(F , π)
Input: DNF F from a fixed tractable class, π

permutation of Var(F)
Output: S set of switches of F under

permutation π

2 If needed, transform F into an essential DNF

3 if F ≡ 0 ∨ F ≡ 1 then return ∅
4 M ← ∅
5 x← π[1]
6 σ ← π[2 ..]

7 if F [x := 0](1, . . . , 1) 6= F [x := 1](0, . . . , 0)

then M ←
{

2|σ|
}

8 L← SwitchSet(F [x := 0], σ)
9 R← SwitchSet(F [x := 1], σ)

10 return L ∪M ∪ (R+ 2|σ|)
11 end

Algorithm 1: Switch-listing algorithm

tained from π by deleting x. First the algorithm checks
for a switch in the middle (between the largest input
vector of F [x := 0] and the smallest input vector of
F [x := 1]), then it recurses on the left half (by call-
ing SwitchSet(F [x := 0], σ)) and on the right half
(by calling SwitchSet(F [x := 1], σ)), and finally it
glues all three returned values together (of course it has
to shift all switches returned from the right half by the
size of the left half).

Because we are primarily interested in the polyno-
miality of the running time of the algorithm, we present
only a simplified complexity analysis here which proves
O(|S| (n2 + n` + p(n, `))) running time. A more de-
tailed and much more technical analysis which im-
proves the time complexity to O(|S| (n+ `+ p(n, `)))
may be found in diploma thesis (Hušek 2014).

Theorem 4 (About the switch-listing algorithm). Algo-
rithm 1 correctly outputs all switches of the input DNF
F under permutation π in

O(|S| (n2 + n`+ p(n, `)))

time, where n = |Var(F)| is the number of variables,
` is the total number of literals (sum of term lengths)
in F , p(n, `) is the time needed to transform a DNF
with at most n variables of total length at most ` into
an essential form (which is polynomial in n and ` for
tractable classes of DNFs), and S is the output (the list
of all switches of F under permutation π).

Proof. First of all the algorithm terminates because
each recursive call decreases the number of variables
by one and – in the worst case – every function on zero

4

variables is constant. Correctness is easily shown by in-
duction on the number of variables. It is trivially true
for constant functions. For the induction step it suffices
to realize that the algorithm correctly detects a switch
in the middle and all switches in both subfunctions are
detected correctly by the induction hypothesis.

No let us analyze the time complexity. One invoca-
tion of SwitchSet without recursion and modifica-
tion of elements of R takes time O(n + ` + p(n, `)) if
we perform the transformation into essential form, and
O(n+ `) if we do not. Every switch can be modified at
most n times (because n is the depth of recursion) and
each modification can be done in time O(n).4 So all
modifications of switches take O(n2 |S|) through the
whole run of the algorithm.

The next step is to determine the number of invoca-
tions of function SwitchSet. The tree of recursion is
binary and every node whose both children are leaves
outputs a switch. This is because such a node did per-
form recursion so its input was not a constant function,
but both of its children did not recurse so their inputs
were constant functions. So there is at most |S| of such
nodes with two leaves as children. Let us denote the
set of such internal nodes by T . We want to count the
number of invocations of SwitchSet, i.e. the num-
ber of all internal nodes. However, since each internal
node has two children, each internal node must have at
least one node in T below it (as a descendant). Thus,
if we trace up the paths from nodes in T upwards to
the root of the tree, the union of these paths must con-
tain all internal nodes. The length of each such path is
at most n (the depth of recursion), so there are at most
n |T | ≤ n |S| internal nodes in the recursion tree.

We know that the transformation into an essential
form is needed only after assigning for a non-simple
variable (because of Lemma 3) and at the very begin-
ning of the algorithm. However, it is easy to see, that if
in a given node of the tree of recursion an assignment
for a non-simple variable was performed, then both sub-
trees induced by its children must output at least one
switch each. So when we denote by q the number of
nodes that assign for non-simple variable then the algo-
rithm outputs at least q + 1 switches. Hence q < |S|
and the time complexity of the algorithm is bounded by
qO(n + ` + p(n, `)) + n |S| O(n + `) + O(n2 |S|) =
O(|S| (n2 + n`+ p(n, `))).

Acknowledgements
The authors gratefully acknowledge a support by the
Czech Science Foundation (grant P202/15-15511S).

4 Actually in can be done in O(1) even on a Pointer Ma-
chine with appropriate representation but we do not need this
improved bound here.

References
[Ausiello, D’Atri, and Sacca 1986] Ausiello, G.;
D’Atri, A.; and Sacca, D. 1986. Minimal repre-
sentation of directed hypergraphs. SIAM Journal on
Computing 418–431.

[Boros et al. 2009] Boros, E.; Čepek, O.; Kogan, A.; and
Kučera, P. 2009. A subclass of horn CNFs optimally
compressible in polynomial time. Annals of Mathemat-
ics and Artificial Intelligence 57:249–291.

[Boros, Čepek, and Kučera 2013] Boros, E.; Čepek, O.;
and Kučera, P. 2013. A decomposition method for
CNF minimality proofs. Theoretical Computer Science
510:111–126.

[Boros, Čepek, and Kogan 1998] Boros, E.; Čepek, O.;
and Kogan, A. 1998. Horn minimization by iterative
decomposition. Annals of Mathematics and Artificial
Intelligence 23:321–343.

[Čepek, Kronus, and Kučera 2008] Čepek, O.; Kronus,
D.; and Kučera, P. 2008. Recognition of interval
Boolean functions. Annals of Mathematics and Arti-
ficial Intelligence 52(1):1–24.

[Čepek, Kučera, and Savický 2012] Čepek, O.; Kučera,
P.; and Savický, P. 2012. Boolean functions with a
simple certificate for cnf complexity. Discrete Applied
Mathematics 160(4):365–382.

[Darwiche and Marquis 2002] Darwiche, A., and Mar-
quis, P. 2002. A knowledge compilation map. Journal
Of Artificial Intelligence Research 17:229–264.

[Hammer and Kogan 1993] Hammer, P. L., and Kogan,
A. 1993. Optimal compression of propositional horn
knowledge bases: Complexity and approximation. Ar-
tificial Intelligence 64:131–145.

[Hammer and Kogan 1995] Hammer, P. L., and Kogan,
A. 1995. Quasi-acyclic propositional horn knowledge
bases: Optimal compression. IEEE Transactions on
Knowledge and Data Engineering 7(5):751–762.

[Huang and Cheng 1999] Huang, C., and Cheng, K.
1999. Solving constraint satisfiability problem for auto-
matic generation of design verification vectors. In Pro-
ceedings of the IEEE International High Level Design
Validation and Test Workshop.

[Hušek 2014] Hušek, R. 2014. Properties of interval
boolean functions. Master’s thesis, Charles University
in Prague, Faculty of Mathematics and Physics. [in
Czech].

[Kronus and Čepek 2008] Kronus, D., and Čepek, O.
2008. Recognition of positive 2-interval Boolean func-
tions. In Proceedings of 11th Czech-Japan Seminar on
Data Analysis and Decision Making under Uncertainty,
115–122.

[Lewin et al. 1995] Lewin, D.; Fournier, L.; Levinger,
L.; Roytman, E.; and Shurek, G. 1995. Constraint

5

satisfaction for test program generation. In Comput-
ers and Communications, 1995., Conference Proceed-
ings of the 1995 IEEE Fourteenth Annual International
Phoenix Conference on, 45–48.

[Schieber, Geist, and Zaks 2005] Schieber, B.; Geist,
D.; and Zaks, A. 2005. Computing the minimum DNF
representation of boolean functions defined by inter-
vals. Discrete Applied Mathematics 149:154–173.

[Umans, Villa, and Sangiovanni-Vincentelli 2006]
Umans, C.; Villa, T.; and Sangiovanni-Vincentelli,
A. L. 2006. Complexity of two-level logic minimiza-
tion. IEEE Trans. on CAD of Integrated Circuits and
Systems 25(7):1230–1246.

[Umans 2001] Umans, C. 2001. The minimum equiva-
lent DNF problem and shortest implicants. J. Comput.
Syst. Sci. 63(4):597–611.

6

	Introduction
	Preliminaries
	Compiling a DNF into an interval representation

