
Logical Analysis of Multiclass Data

Munevver Mine Subasi∗
Department of Mathematical Sciences

Florida Institute of Technology
150 W. University Blvd.

Melbourne, FL 32901 USA

Juan Felix Avila-Herrera†
Department of Mathematical Sciences

Florida Institute of Technology
150 W. University Blvd., Melbourne, FL 32901 USA

Universidad Nacional de Costa Rica
Heredia, Costa Rica

Abstract

Logical Analysis of Data (LAD) is a two-class learn-
ing method which integrates principles of combina-
torics, optimization, and the theory of Boolean func-
tions. This paper proposes an algorithm based on
mixed integer linear programming to extend the LAD
methodology to solve multi-class classification prob-
lems, where One-vs-Rest (OvR) learning models are
efficiently constructed to classify observations in pre-
defined classes. The utility of the proposed approach
is demonstrated through experiments on multi-class
benchmark datasets.

1 Introduction
Data mining studies are concerned with extracting mean-
ingful knowledge from large-scale datasets. While there are
various data mining methodologies, considerable number of
principle concepts appears in one form or another in many
data mining applications. A typical data analysis pipeline
comprises four phases: (1) data pre-processing (data trans-
formation, imputation, feature selection/reduction), (2a)
class discovery (clustering), or (2b) class comparison
and discrimination (regression/classification), (3) evaluation
(statistical tests/cross-validation), and (4) interpretation of
the results.

With the advent of new technologies research in vari-
ous fields has been shifted from hypothesis-driven to data-
driven and classification problem has become ubiquitous
in many real-world applications that require discrimina-
tion among predefined classes. Well-known classification
algorithms such as support vector machines (Burges 1998;
Schölkopf and Smola 2001), neural networks (Fausett 1994;
Bishop 2007), decision trees (Bishop 2007; Duda, Hart, and
Stork 2001), k-Nearest Neighbor (Aiolli 2004; Mitchell and
Schaefer 2001), and Naive Bayes (Duda, Hart, and Stork
2001; Bishop 2007), etc., are designed to solve binary clas-
sification problems where a learning model is constructed
to separate observations in two predefined classes. How-
ever, in many scenarios, it is desirable to have the ability
to separate observations into more than two classes. Typ-
ical examples include identification of different subtypes
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of human cancers (Hanash and Creighton 2003), protein
fold recognition (Ding and Dubchak 2001; Misselwitz et al.
2010), microscopy images (Boland et al. 1998), histogram-
based image classification (Chapelle, Haffner, and Vapnik
1999), handwritten character recognition (LeCun et al. 1989;
Lee and Seung 1997), part-of-speech tagging (Even-Zohar
and Roth 2001), speech recognition (Jelinek 1998), text cat-
egorization (Apté, Damerau, and Weiss 1994; Dagan et al.
1997), etc. Since the problem is of practical importance,
there have been several attempts to extend binary clas-
sification algorithms to multi-class problems in literature.
Here are some of them: multiclass classification (Beygelz-
imer, Langford, and Ravikumar 2007; Yang and Tsang
2012; Gehler and Nowozin 2009; Har-Peled, Roth, and Zi-
mak 2002), discriminant analysis for multi-class classifica-
tion (Liu et al. 2011; Li, Zhu, and Ogihara 2006), mul-
ticlass learning (Amit et al. 2007; Even-Zohar and Roth
2001), combining many two-class classifiers into a multi-
class classifier (Platt, Cristianini, and Shawe-Taylor 2000;
Wu, Lin, and Weng 2004; Tewari and Bartlett 2007; Tax
and Duin 2002; Galar et al. 2011), multi-class classification
with applications (Singh-Miller and Collins 2009), mixed-
integer programming approach to multi-class data classi-
fication, (Üney and Türkay 2006; Guo and Ryoo 2012;
Ryoo and Jang 2009), general multiclass classification meth-
ods reviews (Aly 2005), and multiclass classification by us-
ing support vector machines (Aiolli and Sperduti 2006).

The most common approaches to multi-class classifi-
cation are the natural extension of binary classification
problem known as One-vs-One (OvO) (Hastie and Tibshi-
rani 1998) (also called All-vs-All) and One-vs-Rest (OvR)
(also called One-vs-All). Given a K-class dataset, OvO
scheme assumes that there exits a separator between any
two classes and builds K(K − 1)/2 classifiers, denoted by
fij , to distinguish each pair of classes Ci, Cj ∈ C, where
C = {C1, · · · , CK}. Note that fji = −fij . The class of a
new/unseen observation o is then assigned by the use of the
discriminant function

f(o) = arg max
i

∑
j

fij(o). (1.1)

A less expensive approach OvR assumes the existence of
a single separator between a class Ci (for some i) and all
other classes, and builds K different binary classifiers. Let



fi be the ith classifier separating observations in class Ci
(considered to be positive) and observations not in Ci (form
the set of negative observations). In this case a new/unseen
observation o is classified by

f(o) = arg max
i
fi(o). (1.2)

Since both approaches are easy to adopt, diverse group of
researchers invented them independently and the choice be-
tween the use of OvO and OvR in multi-class problems is
largely computational.

In this paper we adopt the OvR approach and develop a
systematic procedure which takes advantage of computer-
related developments and combinatorial optimization tech-
niques, to extend a previously successful classification
method, Logical Analysis of Data (LAD), to solve multi-
class classification problems.

LAD is a pattern-based two-class learning method which
integrates principles of combinatorics, optimization, and the
theory of Boolean functions. The research area of LAD
was introduced and developed by Peter L. Hammer (1986)
whose vision expanded the LAD methodology from the-
ory to successful data applications in numerous biomedical,
industrial, and economics case studies, see, e.g., (Boros et
al. 2000; Reddy 2009; Hammer, Kogan, and Lejeune 2011)
and the references therein. The implementation of LAD al-
gorithm was described in (Boros et al. 1997), and several
further developments of the original algorithm were pre-
sented in (Alexe and Hammer 2006; Bonates, Hammer, and
Kogan 2008; Hammer et al. 2004; Guo and Ryoo 2012;
Ryoo and Jang 2009). An overview of standard LAD al-
gorithm can be found in (Alexe et al. 2007; Bonates,
Hammer, and Kogan 2008). Various recent applications of
LAD are presented in (Dupuis, Gamache, and Pagé 2010;
Esmaeili 2012; Kwok 2001; Lejeune and Margot 2011;
Mortada, Yacout, and Lakis 2011). LAD method has been
extended to survival analysis (Reddy 2009) and regression
analysis (Bonates and Hammer 2007; Lemaire 2011) as
well.

The key ingredient of two-class LAD method is the identi-
fication of patterns distinguishing between positive and neg-
ative observations in a dataset ID = ID+ ∪ ID−, where ID+

(set of positive observations) and ID− (set of negative obser-
vations) are two disjoint sets containing n-dimensional real
vectors. LAD usually produces several hundreds (sometimes
thousands) of patterns. Once all patterns are generated, a
subset of patterns is selected by solving a set covering prob-
lem or by greedy-type heuristics to form an LAD classifica-
tion model such that each positive (negative) observation is
covered by at least one positive (negative) pattern (and ide-
ally, is not covered by any negative (positive) pattern) in the
model. The patterns selected into the LAD model are then
used to define a discriminant function that allows the classi-
fication of new or unseen observations.

Extensions of LAD algorithm to multi-class problems
are studied by Moreira (2000) and Mortada (2010). Mor-
eira (2000) proposed two methods to break down a multi-
class classification problem into two-class problems using
an OvO approach. The first method uses the typical OvO
type approach which does not require the alteration of the

structure of the standard LAD algorithm as described in
(Boros et al. 2000). The second OvO-type method modifies
the architecture of the pattern generation and theory forma-
tion steps in standard LAD method, where an LAD pattern
Pij is generated for each pair of classes Ci, Cj ∈ C, i 6= j.
After a pattern Pij is generated, its behavior on classes Ck
for all k 6= i, j is examined. These classes can acquire three
different status, called “positive”, “negative”, or “neutral”,
with regard to pattern Pij . These status are determined by
the use of the coverage rate of pattern Pij on class Ck, k 6= i,
j, that is, the proportion of observations from Ck covered by
pattern Pij . Given a dataset with K different classes, the
proposed methodology of Moreira (2000) generates a multi-
class LAD modelM and a decomposition matrix D of size
|M| ×K with entries

dpk =


ω
(Pij)
k if ω

(Pij)
k ≥ ω+

0 if ω− < ω
(Pij)
k < ω+

−1 if ω
(Pij)
k ≤ ω−

where 1 ≤ p ≤ |M|, 1 ≤ k ≤ K and 0 ≤ ω
(Pij)
k ≤ 1 is

the coverage rate of pattern Pij on class Ck, and ω+, ω− are
user-defined parameters. The value of entry dpk determines
the status of class Ck with regard to pattern Pij . The pro-
posed algorithm also generates a matrix R of size K × K,
where each entry stores the differentiability rate of class Ci
from class Cj , that is, the ratio of observations in Ci covered
by patterns inM which do not cover (or only cover a small
proportion of) observations in Cj . The authors of (Moreira
2000) observed that their second approach produces less ac-
curate classification models than those obtained by the first
approach, however, decision rules generated by second ap-
proach are more intuitive as they relate several classes at the
same time.

The paper by Mortada (2010) proposed a multi-class
LAD method algorithm which integrates ideas from the sec-
ond approach presented by Moreira (2000) which is based
on OvO approach and an implementation of LAD based
on mixed integer linear programming (MILP) presented by
Ryoo and Jang (2009). The methodology of Mortada (2010)
was applied to three multi-class benchmark datasets. The au-
thors of this paper observed that the MILP based LAD ap-
proach of Ryoo and Jang (2009) combined with the second
approach of Moreira (2000) provides classification models
with higher accuracy than those models obtained by Mor-
eira (2000) approach applied to standard LAD algorithm.

In this paper we propose an algorithmic approach based
on mixed integer linear programming (MILP) to efficiently
build an OvR-type LAD classifier to identify patterns in a
multi-class dataset. The organization of the paper is as fol-
lows. Section 2 describes the basic principles of the stan-
dard LAD algorithm. In Section 3 we present our MILP
based algorithmic approach to extend LAD to multi-class
data analysis, where we obtain OvR-type multi-class LAD
classifier. In Section 4 we present experiments on five multi-
class benchmark datasets to demonstrate the utility of our
proposed methodology.
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2 Preliminaries: Logical Analysis of Data
Logical Analysis of Data (LAD) is a two-class learning al-
gorithm based on combinatorics, optimization, and the the-
ory of Boolean functions. The input dataset, ID, consists of
two disjoint classes ID+ (set of positive observations) and
ID− (set of negative observations), that is, ID = ID+ ∪ ID−

and ID+ ∩ ID− = ∅. The main task of LAD algorithm is
to identify patterns separating the positive and negative ob-
servations based on features measured (Boros et al. 2000).
Below we briefly outline the basic components of the LAD
algorithm. A more detailed overview can be found in (Alexe
and Hammer 2006; Hammer and Bonates 2006).

2.1 Discretization/Binarization and Support Set
Selection

This step is the transformation of numeric features (at-
tributes/variables) into several binary features without los-
ing predictive power. The procedure consists of finding cut-
points for each numeric feature. The set of cut-points can
be interpreted as a sequence of threshold values collectively
used to build a global classification model over all fea-
tures (Boros et al. 2000). Discretization is a very useful step
in data mining, especially for the analysis of medical data
(which is very noisy and includes measurement errors) – it
reduces noise and produces robust results. The problem of
discretization is well studied and many powerful methods
are presented in literature, see, e.g., the survey papers (Kot-
siantis and Kanellopoulus 2006; Liu et al. 2004)).

Discretization step may produce several binary features
some of which may be redundant. Support set is defined as
the smallest (irredundant) subset of binary variables which
can distinguish every pair of positive and negative observa-
tions in the dataset. Support sets can be identified by solving
a minimum set covering problem (Boros et al. 2000).

2.2 Pattern Generation
Patterns are the key ingredients of LAD algorithm. This step
uses the features in combination to produce rules (combi-
natorial patterns) that can define homogenous subgroups of
interest within the data. The simultaneous use of two or more
features allows the identification of more complex rules that
can be used for the precise classification of an observation.

Given a binary (or binarized) dataset ID = ID+ ∪ ID−,
where ID+ ∩ ID− = ∅, a pattern P is simply defined as a
subcube of {0, 1}n, where n is the number of features in
the dataset. A pattern can be also described as a Boolean
term, that is, a conjunction of literals (binary variables or
its negation) which does not contain both a variable and its
negation:

P =
∧

j∈NP

xj

where NP ⊆ {1, · · · , n} and xj is a binary variable. The
number of literals (associated with features) involved in the
definition of a pattern is called the degree of the pattern.

Patterns define homogeneous subgroups of observations
with distinctive characteristics. An observation o ∈ ID sat-
isfying the conditions of a pattern P , i.e., P (o) = 1, is

said to be covered by that pattern. A pure positive (nega-
tive) pattern is defined as a combination of features which
covers a proportion of positive (negative) observations, but
none of the negative (positive) ones: P (o) = 1 for at least
one o ∈ ID+ (or, o ∈ ID−), and P (o) = 0 for every
o ∈ ID− (or, o ∈ ID+). Coverage of a positive (negative)
pattern P , denoted by Cov(P ), is the set of observations
o ∈ ID+(or, o ∈ ID−) for which P (o) = 1. A pattern P
is called a strong pattern if there is no pattern P ′ such that
Cov(P ) ⊂ Cov(P ′). Pattern P is called a prime pattern if
the deletion of any literal from P results in a term that is no
longer a pattern.

The most straightforward approach to pattern generation
is based on the use of combinatorial enumeration techniques,
for example, a bottom-up/top-down approach as described
by Boros et al. (2000). The bottom-up approach follows a
lexicographic order in generating the patterns in order to re-
duce the amount of computations necessary. The approach
starts with terms of degree one that cover some positive ob-
servations. If such a term does not cover any negative obser-
vation, it is a positive pattern. Otherwise, literals are added
to the term one by one until generating a pattern of prefixed
degree. The top-down pattern generation approach starts by
considering all uncovered observations as patterns of degree
n and for each of those patterns, literals are removed one
by one, until a prime pattern is reached. The enumeration
type pattern generation approach is a costly process. Given
a two-class binary dataset with n features, the total number
of candidate patterns to be searched is

∑n
i=1 2i

(
n
i

)
and the

number of degree d patterns can be 2d
(
n
d

)
.

Since patterns play a central role in LAD methodology,
various types of patterns (e.g., prime, spanned, maximum)
have been studied and several pattern generation algorithms
have been developed for their enumeration (Alexe et al.
2007; Bonates, Hammer, and Kogan 2008; Hammer et al.
2004; Guo and Ryoo 2012; Ryoo and Jang 2009). Our OvR-
type multi-class LAD algorithm is motivated by the MILP
approach of Ryoo and Jang (2009) that generates strong
LAD patterns in a two-class dataset. This approach is out-
lined below:

Consider a two-class dataset ID consisting of m binary
observations and n features. Let I+ = {i : oi ∈ ID+} and
I− = {i : oi ∈ ID−}, where ID = ID+ ∪ ID− and ID+ ∩
ID− = ∅. For each observation oi ∈ ID, let oij denote the
binary value of the j-th feature in that observation. Let aj ,
j = 1, · · · , n, denote the features in ID and introduce n new
features an+j = 1−aj , j = 1, · · · , n (negation of aj). Ryoo
and Jang (2009) formulated the following MILP to generate
strong patterns:
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Minimize z = c d+
∑
i∈I+

wi

subject to
2n∑
j=1

oijyj + nwi ≥ d, i ∈ I+

2n∑
j=1

oijyj ≤ d− 1, i ∈ I−

yj + yn+j ≤ 1, j = 1, · · · , n
2n∑
j=1

yj = d; 1 ≤ d ≤ n

wi, yj ∈ {0, 1}, i = 1, · · · ,m; j = 1, · · · , 2n

(2.3)

where c ∈ IR is a constant and variables yj and yn+j are
associated with features aj and an+j , j = 1, · · · , n, respec-
tively. Binary variableswi’s are associated with the coverage
of a positive pattern P and are defined by

wi =

{
1 if P (oi) = 0, i ∈ I+
0 if P (oi) = 1, i ∈ I+

Ryoo and Jang (2009) proved that when c > 0, an optimal
solution (w, y, d) of problem (2.3) is a positive strong prime
pattern of the form:

P =
∧

{j : yj=1,j=1,··· ,n}

aj
∧

{j : yn+j=1,j=1,··· ,n}

āj .

Note that if we change the roles of index sets I+ and I− in
problem (2.3), an optimal solution of the problem provides
us with a pure negative strong prime pattern when c > 0.

2.3 LAD Model
An LAD model is a collection of positive and negative pat-
terns which provides the same separation of the positive and
negative observations as the entire collection of patterns,
called pandect and denoted by P = P+ ∪ P−, where P+

and P− are disjoint sets of all positive and negative pat-
terns generated in pattern generation step, respectively. In
many cases, when constructing an LAD model, every ob-
servation in the training dataset is required to be covered
at least k times (k ∈ ZZ+) by the patterns in the model,
M = M+ ∪ M−, where M+ ⊆ P+ and M− ⊆ P−.
Such an LAD model can be obtained from the pandect P
by solving a set covering problem. However, in general, the
size of the pandect is very large. In this case the standard
LAD algorithm (where patterns are generated by, for exam-
ple, top-down/bottom-up approach) uses greedy heuristics to
solve the set-covering problem to generate an LAD model.

In case of MILP approaches to generate LAD patterns,
Ryoo and Jang (2009) presented the following pattern gen-
eration algorithm based on their MILP approach to produce
an LAD model (a set of positive and negative patterns):

Algorithm 1 generates the minimum number of patterns
required to cover the training data set. Note that after a pat-
tern is generated, observations covered by that pattern is
deleted from the training data to prevent the algorithm from

Algorithm 1: Pattern Generation
Data: Training data, Support Features, MILP model

(2.3) for pattern generation
Result: Set of + and − patterns (M+ andM−, resp.)

1 for ∗ ∈ {+,−} do
2 setM∗ = ∅ ;
3 while I∗ 6= ∅ do
4 formulate and solve an instance of the MILP

problem (2.3);
5 form a pattern P from the solution obtained;
6 M∗ ←M∗ ∪ {P};
7 I∗ ← I∗ \ {i ∈ I∗ : oi is covered by P};

8 returnM∗;

finding the same pattern found in the previous solutions of
problem (2.3). The resulting set of positive and negative pat-
terns form an LAD modelM.

2.4 Classification and Accuracy
Given an LAD modelM = M+ ∪M−, the classification
of a new/unseen observation o /∈ ID is determined by the
sign of a discriminant function ∆ : {0, 1}n → IR associated
with the modelM, where ∆(o) is defined as the difference
between the proportion of positive patterns and negative pat-
terns covering o, that is,

∆(o) =
∑

P+
k ∈M+

ω+
k P

+
k (o) −

∑
P−k ∈M−

ω−k P
−
k (o),

where ω+
k ≥ 0 and ω−k ≥ 0 are the weights assigned to pos-

itive patterns P+
k ∈ M+ and negative patterns P−k ∈ M−,

respectively. The weights ω+
k and ω−k can be calculated in

several ways. One possibility is to use the proportion of pos-
itive (negative) observations covered by a positive pattern
P+
k ∈M

+ (a negative pattern P−k ∈M
−) to the total num-

ber of positive (negative) observations (called the prevalence
of a pattern):

ω+
k =

1∣∣ID+
∣∣ ∑
i∈I+

P+
k (oi) and ω−k =

1

|ID−|

∑
i∈I−

P−k (oi)

where I+ = {i : oi ∈ ID+}, and I− = {i : oi ∈ ID−}.
The accuracy of the model is estimated by classical cross-

validation procedure (Dietterich 1998; Efron and Tibshirani
1986; Hastie et al. 2005; Kohavi 1995). If an external dataset
(test/validation set) is available, the performance of model
M is evaluated on that set.

3 Multi-class LAD Algorithm
In this section we present an OvR-type extension of LAD
algorithm to multi-class classification problems. As in con-
ventional LAD algorithm our multi-class LAD approach has
four steps: (i) binarization and support set selection, (ii) pat-
tern generation, (iii) theory formation, and (iv) classification
and accuracy. These steps are discussed below.

4



3.1 Binarization and Support Set Selection
Binarization of a multi-class numeric data is similar to that
of two-class data discussed in Section 2.1. Binarization step
associates several cut-points, αvk , and the following indica-
tor variables to a numeric feature v to transform it into a set
of binary features:

xvk =

{
1 if v ≥ αvk
0 if v < αvk

Transforming the data from discrete levels to indicator vari-
ables results in a multi-class binary dataset. For each vari-
able, virtually any numerical value can be considered as
a cut-point. However, the cut-points are chosen in a way
which allows to distinguish between observations in differ-
ent classes, see e.g., (Kotsiantis and Kanellopoulus 2006).
The multi-class discretization problem is extensively stud-
ied and there are different approaches to accomplish this task
(Friedman et al. 2000).

In what follows we develop our multi-class LAD method
under the assumption that we are given a binary (or bina-
rized) multi-class dataset.

3.2 Pattern Generation: MILP Based Approach
Let ID = ID1 ∪ · · · ∪ IDK be a K-class binary dataset with
n features and m observations. Let C = {C1, · · · , CK} de-
note the corresponding family of classes in ID, that is, any
observation in IDk has class Ck (k = 1, · · · ,K).

In order to formulate an MILP to generate a pattern PCp
covering some of the observations in class Cp and none of
the observations in Ck, k 6= p, we proceed as follows:

(1) Associate a vector y = (y1, · · · , y2n) ∈ {0, 1}2n to pat-
tern PCp , where the components y1, · · · , y2n of vector y
are relative to the features such that if we have yj = 1 for
some j = 1, · · · , n, then the literal xj (associated with
the j-th feature in ID) is included in pattern PCp and if
yn+j = 1, then the literal x̄j (complement of xj) is in-
cluded in pattern PCp . Since a pattern cannot include both
xj and x̄j , we impose the condition

yj + yn+j ≤ 1, j = 1, · · · , n. (3.4)

(2) Define a binary vector w = (w1, w2, · · · , wm) that is as-
sociated with the coverage of the pattern PCp and will be
used to score penalization as follows: For 1 ≤ i ≤ m

wi =

{
1 if oi ∈ Cp is not covered by pattern PCp
0 otherwise.

(3) Consider the augmented matrix B = [ID|ID], where ID is
the binary data obtained from ID by replacing 0 entries by
1 and 1 entries by 0. Define the vector v = By. In order
to produce a pure pattern PCp with degree d we prescribe
the following constraints:

vi + nwi ≥ d, i ∈ Ip , (3.5)

vi ≤ d− 1, i ∈ Ik , k = 1, · · · ,K and k 6= p (3.6)
and

2n∑
j=1

yj = d , (3.7)

where 1 ≤ d ≤ n, Ip = {i : oi is in class Cp} and
Ik = {i : oi is in class Ck} for all k 6= p.

The conditions in (3.4)-(3.7) can be used to write an MILP
whose optimal solution produces a pure pattern PCp associ-
ated with class Cp for some 1 ≤ p ≤ K as shown below:

Minimize z = d+
∑
i∈Ip

wi

subject to
vi + nwi ≥ d, i ∈ Ip
vi ≤ d− 1, i ∈ Ik , k = 1, · · · ,K, k 6= p
yj + yn+j ≤ 1, j = 1, 2, · · · , n
2n∑
j=1

yj = d; 1 ≤ d ≤ n

wi, yj ∈ {0, 1}, i = 1, · · · ,m; j = 1, · · · , 2n

(3.8)

Notice that problem (3.8) is a modified version of the
MILP problem (2.3) of Ryoo and Jang (2009) that is de-
signed to generate patterns in a two-class dataset. An op-
timal solution of problem (3.8) can be used to form a
pure strong prime pattern PCp associated with class Cp,
1 ≤ p ≤ K. The objective function of (3.8) ensures that the
coverage of pattern PCp is maximized and the degree of PCp
(i.e., the number of literals used in PCp ) is as small as possi-
ble. These assertions are provided in the following two the-
orems:
Theorem 3.1. Let (v∗, y∗,w∗, d∗) be a feasible solution of
problem (3.8). Then

PCp =
∧

{j:y∗j=1,j=1,··· ,n}

xj
∧

{j:y∗n+j=1,j=1,··· ,n}

x̄j (3.9)

forms a pattern of degree d associated with class Cp.
Proof. Let (v∗, y∗,w∗, d∗), where v∗ = By∗, be a fea-

sible solution of problem (3.8). First note that the constraint
yj + yn+j ≤ 1, j = 1, · · · , n ensures that the Boolean
term PCp shown in (3.9) does not contain both xj and x̄j
associated with the jth feature in dataset ID and the condi-
tion

∑2n
j=1 yj = d guarantees that the term PCp is of de-

gree d. The constraint vi + nwi ≥ d, i ∈ Ip ensures that
PCp covers at least one observation oi in class Cp, that is,
PCp(oi) = 1, i ∈ Ip. If an observation oi, i ∈ Ip, is cov-
ered by PCp , then d yj’s are set to 1 and hence, we have
vi = d, i ∈ Ip, where vi is the ith component of vec-
tor v = By. However, if an observation is not covered by
PCp , then vi < d, i ∈ Ip, and the term “nwi” is added to
the left hand side to compensate it. Similarly, the condition
vi ≤ d−1, i ∈ Ik , k = 1, · · · ,K and k 6= p guarantees
that the term PCp does not cover any observation oi, i /∈ Ip.
Thus, the solution (v∗, y∗,w∗, d∗) can be used to form a pure
pattern PCp of degree d that is associated with class Cp.
Theorem 3.2. Let (v∗, y∗,w∗, d∗) be an optimal solution of
problem (3.8). Then the pattern (3.9) is a strong prime pat-
tern of degree d associated with class Cp.

Proof. Let (v∗, y∗,w∗, d∗) be an optimal solution of
problem (3.8), hence, as discussed in the proof of Theorem
3.1, it can be used to construct a pure pattern PCp of degree d
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that is associated with class Cp. Note that the objective func-
tion of problem (3.8) minimizes d and the sum

∑
i∈Ip wi.

When
∑

i∈Ip wi is minimized the optimal solution to the
model ultimately tries to minimize the number of observa-
tions in Ip that are not covered by the constructed pattern.
Similarly, at an optimal solution (v∗, y∗,w∗, d∗), the term d
(corresponding to the degree of a pattern) is minimum. As
a result, an optimal solution to problem (3.8) can be used to
form a pattern with maximum coverage and minimum de-
gree. The resulting pattern is a strong prime pattern.

Note that problem (3.8) produces a strong prime pattern
PCp that covers some of the observations in class Cp, but
none of the observations in Ck, k 6= p. Recall that an LAD
model is a set of patterns where each observation is covered
by at least one pattern. In order to produce set of patterns
associated with class Ck, k = 1, · · · ,K, we shall use an
algorithmic approach as described below.

3.3 Theory Formation: One-versus-Rest (OvR)
Type Multi-class LAD Algorithm

In this section we present an algorithm that produces an
OvR-type multi-class LAD model based on the multi-class
MILP approach given in Section 3.2. Note that in case of
two-class MILP approach, Algorithm 1 of Ryoo and Jang
(2009) (shown in Section 2.3) produces a set of patterns as-
sociated with a positive (negative) class that loops as many
times as necessary until all observations in positive (neg-
ative) class are covered by at least one pattern. The setup
proposed by Ryoo and Jang (2009) is inconvenient because
a single pattern is sufficient to cover every observation in
positive (negative) class which results in a classifier with
small number of patterns and hence, poor differentiating
power between the two classes of a dataset. In such cases
the prediction of a new or unseen observation would depend
on a single or a few patterns. Note also that once a posi-
tive (negative) pattern P is found as an optimal solution of
problem (2.3), in order to produce a new positive (negative)
pattern P ′, i.e., another optimal solution of problem (2.3),
Algorithm 1 removes the observations covered by pattern
P while execution. This is counterproductive because every
time the algorithm uses less information (smaller training
set) to compute new patterns. Mortada (2010) has adopted a
similar approach to develop an OvO-type multi-class LAD
algorithm, where observations covered by a pattern are re-
moved from the training dataset while execution of the pro-
posed algorithm (see page 87 of (Mortada 2010)). The dif-
ference between Ryoo-Jang’s algorithm (2009) and Mor-
tada’s algorithm (2010) is that in Mortada’s algorithm the
looping stops when each observation is covered by l pat-
terns.

In order to avoid the removal of observations from the
training dataset when generating new patterns that forms a
multi-class LAD model, we modify constraint (3.5) as fol-
lows:

Define κ as an m-vector that keeps track of the num-
ber of patterns covering an observation oi ∈ ID for all
i = 1, · · · ,m. Initially, for each class Ck, 1 ≤ k ≤ K we set
κ = 0. This vector shall be updated as new solutions of the

MILP problem (3.8) are found. With the help of new vector
κ, condition (3.5) can be replaced by

vi + n (wi + κi) ≥ d, i ∈ Ip . (3.10)

where κi ≥ 0, i = 1, · · · ,m.

Theorem 3.3. Let (v′, y′,w′, d′) be an optimal solution of
problem (3.8) where the constraint

vi + nwi ≥ d, i ∈ Ip

is replaced by constraint (3.10). Then

PCp =
∧

{j:y′j=1,j=1,··· ,n}

xj
∧

{j:y′n+j=1,j=1,··· ,n}

x̄j

is a degree d strong prime pattern associated with class Cp.

Proof. The proof of the assertion follows immediately
from the proof of Theorem 3.1 and Theorem 3.2.

In Algorithm 2 we present our multi-class LAD algorithm
that produces a multi-class LAD model (a set of patterns as-
sociated with class Cp for all p = 1, · · · ,K). The algorithm
is designed to loop as many times as needed until every ob-
servation in the training dataset is covered by at least one
pattern. To ensure that the MILP problem (3.8) produces a
different optimal solution (to be used to form a pattern PCp
associated with class Cp, p = 1, · · · ,K) at each iteration, we
add systematically a new constraint requiring that an uncov-
ered observation to be covered at the next iteration. Since the
degree d of a pattern is also a decision variable in our MILP
problem (3.8), in the worst case it would be possible to gen-
erate a pattern of degree n to cover a particular observation.
Hence, the algorithm ensures that every observation in the
dataset is covered by at least one pattern.

Algorithm 2 produces a multi-class LAD model M =
M1 ∪ · · · ∪ MK where Mk, k = 1, · · · ,K, is the set
of strong prime patterns associated with class Ck, k =
1, · · · ,K, andMi ∩Mj = ∅ for any i 6= j.

Note that in Algorithm 2 we do not require the removal of
observations from the training dataset at any iteration. The
first iteration of Algorithm 2 generates a strong prime pat-
tern by the use of an optimal solution of the original MILP
problem (3.8) and it does not contain any added constraints.
However, NewConstraint is added to the MILP model
each time a new pattern is generated to prevent the algo-
rithm from finding the same pattern found at the previous it-
erations. This is achieved by introducing κi that keeps track
of the number of patterns covering observations oi ∈ ID and
TotCov that counts the number of observations covered so
far.

Another important characteristics of our multi-class LAD
algorithm is that it can detect the inconsistency among the
observations in the given dataset ID. For example, if we have
two observation oi = oj where i ∈ Ip and j ∈ Iq (p 6= q),
then the MILP problem (3.8) is infeasible. Also, Algorithm
2 can be implemented by taking an advantage of parallel
programming where a different computer kernel is used to
compute a set of patterns associated with a specific class Cp.
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Algorithm 2: Multi-class LAD Algorithm
Input: p: index of current class

1 Global data: ID: binary dataset, b: class vector
Result: MyPats[p] : patterns for class Cp

2 B = [ID|ID];
3 v = B y; (* y unknown variable *)
4 MyPats[p] = {};
5 κ = 0;
6 NewConstraint = {};
7 TotCov = 0;
8 while TotCov < |Ip| do
9 R = {Eq.(3.4), · · · ,Eq.(3.7)} ∪ NewConstraint;

10 pat = Minimize

d+
∑
i∈Ip

wi : R and v, y,w, d ∈ Z


y∗ part of pat corresponding to variables y;

11 for i = 1 to m do
12 if vi = d then
13 κi = κi +1;

14 TotCov = 0;
15 for i = 1 to m do
16 if (i ∈ Ip) ∧ (κi 6= 0) then
17 TotCov = TotCov+1;

18 NotFound = True;
19 for i = 1 to m do
20 if

(i ∈ Ip) ∧ (κi = 0) ∧ (vi < d) ∧ (NotFound)
then

21 NewConstraint = {vi = d}; (* d and Y
as unknown variables *)

22 NotFound = False;

23 MyPats[p] = MyPats[p] ∪ {y∗};
24 return MyPats[p];

3.4 Classification and Accuracy
Given a K−class dataset ID = ID1 ∪ · · · ∪ IDK and a cor-
responding multi-class LAD modelM =M1 ∪ · · · ∪MK ,
(Mi ∩Mj = ∅, i 6= j), the classification of a new (or un-
seen) observation o /∈ ID is determined by the value of the
discriminant function

∆(o) = arg max
k

∆k(o) (3.11)

where ∆k(o) =
∑

PCk∈Mk
ωkPCk(o), k = 1, · · · ,K and

ωk ≥ 0 are the weights assigned to patterns PCk ∈ Mk.
The weights ωk, k = 1, · · · ,K) can be calculated in several
ways. One possibility is to use the prevalence of patterns that

is defined by ωk =
1

|IDk|
∑
i∈ICk

PCk(oi), where IDk ⊂ ID is

the set of observations in class Ck and ICk = {i : oi ∈ IDk}
for some 1 ≤ k ≤ K. If ∆(o) = ∆p(o) = ∆q(o) for some
p 6= q, then the observation o is unclassified.

Similar to the two-class classification problem the accu-
racy of a multi-class model M is estimated by classical
cross-validation procedure (Dietterich 1998; Efron and Tib-
shirani 1986; Hastie et al. 2005; Kohavi 1995). If an external
dataset (test/validation set) is available, the performance of
the model is evaluated on that set.

4 Experiments
In this section we present experimental results to show how
Algorithm 2 described in Section 3.3 can be used to solve
multi-class classification problems. Regarding to the stop-
ping criterion, Algorithm 1 ends (by construction) once all
the patterns for each class have been computed. In the worse
case, an ad hoc pattern can be built by the algorithm to cover
a single observation. In our experiments we depend on the
Mathematica procedure Minimize to generate our patterns
by solving the corresponding MILP. It the discretization step
has been done properly, each one of the MILP computed in
Algorithm 1 is feasible. It could be advisible to set a time
limit when invoke Algorithm 2, however in our experiments
this was not necessary.

4.1 An overview of experiments
In order to test our proposed multi-class LAD methodology
we conduct experiments on five multi-class datasets from
UCI Machine Learning Repository1. We implemented Algo-
rithm 2 implemented in Wolfram Mathematica 8 on an Intel
CORE i7 laptop with 12 GB Memory running Windows 7
computer. The set of patterns associated with a specific class
Cp (p = 1, · · · ,K) is generated by the use of Mathematica
parallel programming command:

ParallelMap[Multi-class LAD Algorithm, Range[K]]

where K = |C|. ParallelMap applies Algorithm 2 in paral-
lel to each class Cp, p = 1, · · · ,K.

Parallel programming speeds up the pattern seeking pro-
cess because we can invoke Algorithm 2 simultaneously but
for different class. The steps of our experiments are outlined
below:

(i) Divide the K−class binary (or binarized) dataset ID =
ID1 ∪ · · · ∪ IDK into two disjoint datasets IDTR (train-
ing set) and IDTS (test set) such that ID = IDTR ∪ IDTS

and IDTR ∩ IDTS = ∅. The partitioning of ID into sub-
sets IDTR and IDTS is done randomly by ensuring that the
number of observations with class Ck in those subsets are
proportional to the number of observations with class Ck
in the original dataset ID for all k = 1, · · · ,K.

(ii) Run the multi-class LAD algorithm on the training set
IDTR to obtain a multi-class LAD modelM =M1∪· · ·∪
MK , (Mi ∩Mj = ∅, i 6= j), where every observation in
IDTR is covered by at least one pattern inM.

(iii) For each observation o ∈ IDTS find the value of

∆k(o) =
∑

PCk∈Mk

ωkPCk(o), k = 1, · · · ,K

1http://archive.ics.uci.edu/ml/
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Dataset No. of
Observations / Class

No. of
Features

Iris 50 / 1, 50 / 2, 50 / 3 4

CNAE-9
70 / 1, 57 / 2, 59 / 3,
62 / 4, 58 / 5, 60 / 6,
56 / 7, 54 / 8, 64 / 9

857

Synthetic
control

100 / 1, 100 / 2,100 / 3,
100 / 4, 100 / 5, 100 / 6 60

Glass
ID

69 / 1, 76 / 2, 17 / 3,
13 / 4, 9 / 5, 29 / 6 10

Wine 59 / 1, 71 / 2, 48 / 3 12

Table 1: Five multi-class datasets from UCI repository

Dataset Accuracy Standard
Deviation

Completion
Time (seconds)

Iris 94% 2.2 16.7
CNAE-9 80.40% 1.75 102,589
Synthetic
control 90.33% 2.4 19436

Glass
ID 79.54% 5.35 1578

Wine 91.33% 3.54 236.5

Table 2: Average accuracy and completion time

(iv) Use the discriminant function ∆(o) in equation (3.11)
to assign each observation o ∈ IDTS to a class Ck for some
1 ≤ p ≤ K.

(v) Compute the accuracy of the modelM on IDTS.

For each dataset ID we repeat steps (i)-(v) ten times, each
time randomly partitioning the dataset into subsets IDTR and
IDTS. After ten experiments for each dataset are completed,
the overall accuracy is obtained as the average of accuracies
of the ten experiments.

4.2 Experimental Results
In order to test our proposed multi-class LAD methodology
we conduct experiments on five multi-class datasets from
UCI Machine Learning Repository 1. Table 1 summarizes
the characteristics of these datasets. For each dataset the
average accuracy of ten experiments as well as the overall
completion time are included in Table 2. The average sensi-
tivities per class for each dataset are shown in Tables 3 and
4.

5 Conclusions
In this paper we have proposed a multi-class LAD clas-
sification algorithm. Our discussion started reviewing var-
ious efforts done in order to extend LAD classification
that was originally conceived only for a two-class dataset.
Rather than using the traditional enumerative approach, we
have adopted the vision of Ryoo and Jang (2009) by us-
ing an MILP approach to generate LAD patterns. These re-
searchers proposed an algorithm that works properly with

Dataset C1 C2 C3 C4 C5 C6
Iris 100% 91% 91%

Synthetic
control 93% 89% 86% 88% 98% 88%

Glass
ID 84% 83% 61% 56% 65% 86%

Wine 96% 85% 95%

Table 3: Average sensitivity

CNAE-9 C1 C2 C3 C4 C5
87% 85% 77% 67% 97%

CNAE-9 C6 C7 C8 C9
70% 89% 91% 60%

Table 4: Average sensitivity – CNAE-9

two-class datasets. We have extended their work to be used
for the classification of datasets with K classes. We have
also added parallel programming to speed up the computa-
tions. Our experiments on a collection of benchmark multi-
class datasets show that the proposed multi-class LAD al-
gorithm produces highly accurate classification models. Our
multi-class methodology integrates principles from integer
programming and computer related advancements to effi-
ciently generate LAD patterns. It is a very promising option
to solve multi-class classification problems.
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