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Abstract

This study integrates the principles of pattern-based
classification and Kaplan-Meier survival analysis to
identify genes and clinical features associated with
the rapid progression of chronic kidney disease. The
methodology successfully determines the gene-gene
survival interactions in the African-American Study of
Chronic Kidney Disease with Hypertension (AASK)
genomic dataset. The results obtained from this study
serves as a basis for the future studies on comparison
of the disease progression in white patients with that in
African-American patients, both those with and those
without apolipoprotein L1 (APOL1) high-risk variants.

1 Introduction
The main function of kidney is to remove excess water and
waste products from blood. It also helps to regulate the lev-
els of minerals such as sodium, calcium, and potassium in
blood. Once suffers from chronic kidney disease (CKD)
when kidney losses its function gradually, usually perma-
nently. CKD, defined by reduced glomerular filtration rate
(GFR), proteinuria, or structural kidney disease, is a world-
wide growing public health problem1. Many subjects with
renal disease of most etiologies progress to severe renal fail-
ure and/or end stage renal disease (ESRD), requiring renal
replacement therapy, which may involve a form of dialysis
or renal transplantation (Lewis et al. 1993; Klahr et al. 1994;
DCCT 1995; Brenner et al. 2001; Lewis et al. 2001; Wright
et al. 2002; Niki, Panos, and Christos 2015). However, pro-
gression rate of CKD is very heterogeneous (Lindeman, To-
bin, and Shock 1985; Lindeman 1990; Hallan et al. 2006).
While a few predictive factors for progression such as pro-
teinuria have been detected, identification of those at risk to
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1Chronic Kidney Disease Surveillance Project, Center for Dis-
ease Control and Prevention – http://nccd.cdc.gov/ckd/

progress remains a significant problem. It has also been es-
tablished that there are several therapies that can ameliorate
the progression of renal disease including ACE inhibitors,
blood pressure control, tight diabetes control and perhaps
low protein diets; however, in trials examining these ther-
apeutic modalities there remains a very significant risk of
progression of renal disease in the subjects receiving optimal
therapy (Lewis et al. 1993; Klahr et al. 1994; DCCT 1995;
Brenner et al. 2001; Lewis et al. 2001; Wright et al. 2002;
Niki, Panos, and Christos 2015).

Identification and characterization of novel biomarkers
and targets of therapy for the ESRD patients remains the
focus of the current research in the field of critical care
medicine and has been the objective of a number of stud-
ies such as the Chronic Renal Insufficiency Cohort (CRIC)2

established in 2001 by the National Institute of Diabetes, Di-
gestive, and Kidney Diseases (NIDDK) to improve the un-
derstanding of CKD and related cardiovascular illness and
the African American Study of Kidney Disease and Hy-
pertension (AASK) Cohort which examines traditional and
non-traditional risk factors for progression of CKD. Since
we use blood samples from AASK, for the proposed study,
we shall discuss the problem in the context of the AASK
results.

AASK, a randomized double-blinded treatment trial, was
motivated by the high rate of hypertension-related renal dis-
ease in the African American population and the scarcity of
effective therapies. The study began as a 21-center random-
ized double-blinded treatment trial of 1,094 African Amer-
icans patients, aged 18-70 yrs with hypertension and renal
failure with GFR between 20 and 65 mL/min/1.73m2.
Other known causes of renal disease such as diabetes were
exclusion criteria as was proteinuria > 2.5gm/gm cre-
atinine. Patients were randomized to the angiotensinogen
converting enzyme inhibitor (ACEi) ramipril, the β-blocker
(BB) metoprolol or the dihydropyridine calcium channel
blocker (CCB) amlodipine, and to usual (mean arterial pres-
sure (MAP 102-107) or low (MAP < 92) blood pres-
sure goals. The rationale for the treatment arms was that
there was human and animal data suggesting that ACEi and
CCB might slow progression of renal disease independent

2http://www.cristudy.org/Chronic-Kidney-Disease/Chronic-
Renal-Insufficiency-Cohort-Study/



of their BP effects (Lewis et al. 1993; Hallan 1998), and
there was data from observational and treatment studies that
a lower BP might have beneficial effects (Klahr et al. 1994;
Klag et al. 1997). Although other studies had attempted to
achieve a 10mmHg MAP separation (Lewis et al. 2001;
Hansson et al. 1998), AASK is the first major trial to actually
achieve this goal. The primary outcome was rate of decline
of GFR (GFR slope) based on iothalamate GFR studies at
6 month intervals, with a secondary clinical composite out-
come of end stage renal disease (ESRD), a 25 ml/min or
50% drop in GFR from baseline (GFR event), or death.

The initial AASK results were mixed (Wright et al. 2002).
It was shown that while therapy can slow the progression of
renal disease, there was still high rate of progression to renal
failure. The CCB arm of the study was stopped early when
interim analysis indicated that CCB was inferior to both BB
and ACEi in patients with > 0.22 urine protein/creatinine
ratio (about 300 mg proteinuria/24h) (Agodoa et al. 2001).
The low BP goal of the study did not improve outcomes:
there was no beneficial effect of low MAP on rate of pro-
gression of renal disease as defined by GFR slope or clin-
ical composite outcomes (GFR events, end stage renal dis-
ease (ESRD) or death). Subsequently a similar result was
found in the REIN trial (Ruggenenti et al. 1999). Stud-
ies in Type 2 diabetes have demonstrated a linear rela-
tion of achieved BP to renal outcomes (Bakris et al. 2003;
Pohl et al. 2005); however, it should be noted that all the
patients in these studies were treated to the same goal BP,
so that rather than low BP being protective, the ability to
achieve lower BPs may have defined a sub-population in
these studies with low risks of disease progression. Despite
lack of effect on renal outcomes in AASK, proteinuria was
diminished by the lower BP goal. This finding is similar to
that previously reported for diabetics (Lewis et al. 2001). Fi-
nally, a subgroup analysis in AASK did suggest that patients
on a non-protective regimen (CCB) may have benefited from
the low BP goal (Contreras et al. 2005). Most importantly in
AASK, ACEi decreased the number of events as compared
to both BB and CCB (Wright et al. 2002). These data for
ACEi vs CCB are tabulated in Table 1 (risk reduction ad-
justed for baseline covariates) and were most dramatic for
the hard outcomes, especially ESRD.

Ramipril vs.
Amlodipine

% Risk
Reduction 95% CI p-value

GFR Event
ESRD or Death 38% 14%-56% 0.004

GFR Event
or ESRD 40% 14%-59% 0.006

ESRD or Death 49% 26%-65% < 0.001
ESRD alone 59% 36%-74% < 0.001

Table 1: Analysis of Clinical Composite Outcomes

Several possible interventions, including controlling
blood pressure (Wright et al. 2002), treating diabetes (DCCT
1995), modifying dietary protein intake (Klahr et al. 1994)
and using medications that might have renoprotective effects
(Wright et al. 2002; Agodoa et al. 2001; Ruggenenti et al.

1999) have been tested in clinical trials. In all cases, the
residual rate of progression of renal disease has remained
significant. To date there are few prediction models to iden-
tify which patients are likely to progress significantly. Sub-
asi et al. (2009) identified serum proteomic patterns: distin-
guishes fast progressors and slow progressors. Seldi-TOF
mass spectra data containing 5731 serum proteomic fea-
tures for 57 fast progressors and 59 slow progressors. Re-
cently, Lipkowitz et al. (2013) examined effects of variants
in gene encoding apolipoprotein L1 (APOL1) on progres-
sion of CKD and observed that renal risk variants in APOL1
were associated with the higher rates of ESRD and progres-
sion of chronic kidney disease in African-American patients
as compared with white patients. Other recent studies in-
clude Rahman et al. (2013), where the effects of 2 antihy-
pertensive drug dose schedules (PM dose and add-on dose)
on nocturnal blood pressure vs. usual therapy (AM dose) in
former participants were determined and Chen et al. (2015),
where the longitudinal changes in hematocrit in hyperten-
sive chronic kidney disease: results from the AASK was
studied.

In this study we apply a pattern-based classification
method and Kaplan Meier survival analysis method on
AASK genomic and clinical data to identify clinical-
genomic as well as gene-gene interactions to find puta-
tive prognostic markers for the progression of renal disease
among AASK patients. Clinical and genomic features iden-
tified in our analysis will be used in a future study to Anal-
ysis of Data, to obtain comparison of the disease progres-
sion in white patients with that in African-American pa-
tients, both those with and those without apolipoprotein L1
(APOL1) high-risk variants.

2 Study Subjects and J48 Classification
Closer inspection of the data highlights the current dilemma:
although there is a 30-60% decrease in the number of events
with ACEiis still a residual event rate of > 6%/yr in the
trial as a whole and > 11%/yr in subjects with urine
protein/creatinine > 0.22, a mild degree of proteinuria of
200-300 mg/day (Figures 1 and 2). In addition it can be
seen that the event rate is essentially constant through-
out the 5 years of the trial, indicating that remaining pa-
tients are still at risk to progress. This finding is similar
to that of other trials such as MDRD (Klahr et al. 1994;
?), the Collaborative Study Group Trial (Lewis et al. 1993),
RENAAL (Brenner et al. 2001) and IDNT (Lewis et al.
2001) .

There was significant heterogeneity of progression rate
of renal disease in the AASK Trial as can be seen in Fig-
ure 3. The rate of decline of GFR after 6 months in the
trial (chronic GFR slope) is depicted in blue for each pa-
tient from most rapid decline (negative slope) on the left,
to the least rapid (positive slope) on the right of the Fig-
ure. It is generally assumed that the expected rate of de-
cline of GFR with aging is −1ml/min/yr (Berg 2006;
Murussi, Gross, and Silveiro 2006), although longitudinal
studies have raised questions about this assumption (Linde-
man, Tobin, and Shock 1985; Lindeman 1990). Using this
estimate, approximately 30% of the patients in Figure 3
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Figure 1: AASK Clinical Composite Events – all patients

Figure 2: AASK Clinical Composite Events – proteinuria

did not progress (right side, slope > −1ml/min/yr) while
approximately 30% progressed rapidly (left side, slope <
−3ml/min/yr). Of interest, it is also apparent that pro-
teinuria, while the strongest predictor of progression rate
in most studies, is not an ideal predictor in that there are a
number of slow progressors with significant proteinuria (red
spikes, right), while a significant number of rapid progres-
sors had no or minimal proteinuria (absence of red bars,
left). This data is supported by the observation in genet-
ics studies that proteinuria and progression of renal dis-
ease may be disparate phenotypes (Fogarty et al. 2000;
Krolewski et al. 2006).

2.1 Pre-processing of AASK Data for
Classification

An avenue that has not been carefully explored is a data
mining approach to detect patterns of clinical features/serum
protein expressions/SNPS that better identify the population
at risk for progression of CKD. The goal of this section is to
identify combinatorial patterns of clinical and SNPs that can
accurately separate the progression of CKD. We have per-
formed a pilot study on a selected subset of subjects from the
African American Study of Kidney Disease and Hyperten-
sion (AASK) Clinical Trial based on the glomerural filtra-

Figure 3: Patients stratified by GFR slope (blue bars) with
degree of proteinuria superimposed (red spikes)

tion slope (GFR) of all AASK patients presented in Figure 3.
The original AASK data contains 1,094 African-American
patients with 88 clinical features and 130 single nucleotide
polymorphism (SNPs). Before we have started our analysis
we have removed all redundant features those with mostly
missing values or no variation in the values as well as all pa-
tients with GFR values values are missing. This resulted in
about 800 AASK patients with 77 clinical features and 113
SNPs for our analysis. In order to develop a classification
model to identify the progression of CKD we have identified
two “extreme” groups of patients where the disease progres-
sion is very small or very fast. Two sets of subjects were
selected from the AASK study: “rapid progressors” (118-
patients) and “slow progressors” (5-patients) based on the
GFR histogram presented in Figure 4.
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Figure 4: GFR Slope of AASK Patients

Table 2 describes the patient population for this pilot
study.

Rapid (n=138) Slow (n=75)
Chronic Slope −5.41± 1.36 2.11± 1.03
GFR 42.83± 13.25 52.30± 10.55
Proteinuria 1.12± 1.40 0.13± 0.20
Age 50.22± 11.94 52.52± 9.52
Weight (kg) 96.42± 22.42 87.52± 19.65
Height (cm) 171.69± 10.56 169.21± 10.80
BMI 32.69± 7.06 30.57± 6.09

Table 2: Baseline Characteristics of Study Population
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Proteinuria was also very different between the 2 groups.
This is consistent with prior data (Wang et al. 2006) that
showed that proteinuria is the strongest predictor of GFR
slope progression in AASK. The discrepancy in gender was
fortuitous and unexpected, since gender did not predict GFR
slope in AASK (Wang et al. 2006).

2.2 Feature Selection
The resulting AASK data consisting of 138 rapid progres-
sors, 75 slow progressors, 77 clinical features, and 113
SNPs, is further investigated to remove any features irrel-
evant for the recognition of a rapid progressor as opposed to
a slow progressor. In order to obtain a classification model
effectively and efficiently we have applied a correlation-
based feature selection procedure ((?)) to retain only those
relevant features successfully distinguishing between rapid
and slow progressors. Correlation-based feature selection
method evaluates the worth of a subset of features by con-
sidering the individual predictive ability of each feature
along with the degree of redundancy between them. Sub-
sets of features that are highly correlated with the outcome
(rapid/slow progression) while having low intercorrelation
are preferred. We have used WEKA ((Hall et al. 2009)), a
commonly used open source data mining software, to per-
form the correlation-based feature selection procedure. Ta-
ble 3 shows the features selected from the 10-fold stratified
cross validation of the correlation-based feature subset se-
lection procedure in WEKA.

Frequency
in folds % Frequency Feature

9 90% Perupherol base
10 100% Proteinuria
10 100% U.Protein/U.Creatinine
7 70% GFR value at G1 visit
9 90% CHGA-7
10 100% CHGB-1
7 70% FGB-G(-455)A

Table 3: Feature Selection - 10 fold stratified cross
validation

We have observed that the SNP, CHGA-7, selected as a
significant feature in feature selection step, contains GG for
all AASK samples, except for one observation which is GA.
Hence, we have removed CHGA-7 from further analysis.
The resulting data contains 138 rapid progressors and 75
slow progressor three clinical features (proteinuria, urine-
protein/urine-creatinine, GFR value at G1 vsit) and two
SNPs (CHGB-1 and FGB-G(-455)A).

2.3 J48 Classification Model
In order to obtain a classification model consisting of combi-
natorial patterns of clinical features and SNPs we have used
a powerful classification method, J48-decision tree method
implemented in WEKA. J48 is an open source Java imple-
mentation of C4.5, an algorithm, that generates a decision

tree developed by Quinlan (1993). Decision Tree is a non-
parametric supervised learning method used for classifica-
tion and regression. The goal is to create a model that pre-
dicts the value of a target variable by learning simple deci-
sion rules inferred from the data features.

J48-decision tree procedure applied to the reduced AASK
dataset from Section 2.2 provides us with the classification
model shown in Figure 5. The classification model contains
7 patterns, S1-S7, for slow progressors and 8 patterns, R1-
R8, for rapid progressors. Note that all patterns are com-
binatorial patterns of significant clinical features and SNPs
obtained in Section 2.2.

Patterns J48 Decision Tree Rules

S1: U. Protein=0 & PLCG2 rs4399527=GC & CHGB 1=TT

S2:
U. Protein=0 & PLCG2 rs4399527=GC & CHGB 1=CT

& peripherol base=0 & Pro./Creat.Ratio>0.01706

S3: U. Protein=0 & PLCG2 rs4399527=GC & CHGB 1=CC

S4:
U. Protein <=0.5 & PLCG2 rs4399527=CC

& Pro./Creat.Ratio <=0.15714

S5:
U. Protein <=0.5 & PLCG2 rs4399527=GG & CHGB 1=TT

& 41.4 < GFR G1 <=59.5816

S6:
U. Protein <=0.5 & PLCG2 rs4399527=GG & CHGB 1=CT

& Pro./Creat.Ratio >0.02177

S7: U. Protein <=0.5 & PLCG2 rs4399527=GG & CHGB 1=CC

R1:
U. Protein=0 & PLCG2 rs4399527=GC & CHGB 1=CT

& peripherol base=0 & Pro./Creat.Ratio<=0.01706

R2:
U. Protein=0 & PLCG2 rs4399527=GC & CHGB 1=CT

& peripherol base=1

R3: 0< U. Protein <=0.5 & PLCG2 rs4399527=GC

R4:
U. Protein <=0.5 & PLCG2 rs4399527=CC

& Pro./Creat.Ratio >0.15714

R5:
U. Protein <=0.5 & PLCG2 rs4399527=GG

& CHGB 1=TT & 41.4< GFR G1 <=59.5816

R6:
U. Protein <=0.5 & PLCG2 rs4399527=GG & CHGB 1=TT

& GFR G1 >59.5816

R7:
U. Protein <=0.5 & PLCG2 rs4399527=GG & CHGB 1=CT

& Pro./Creat.Ratio <=0.02177

R8: U. Protein >0.5

Figure 5: Decision tree classification of AASK samples

The pattern characteristics such as prevalence (propor-
tion of rapid(slow) samples covered by the patterns to total
number of rapid(slow) samples), homogeneity (proportion
of rapid(slow) samples covered by the pattern), and degree
(number of conditions appear in the description of the pat-
tern) of the J48 patterns are given in Figure 6.

2.4 Validation of the J48 Model
The performance of the final J48 classification model pre-
sented in Section 2.3 is evaluated through k-folding (10-
folding in this case) cross validation technique: The AASK
data is randomly partitioned into k = 10 approximately
equal parts; one of these subsets is designated as “test set”,
a model is built on the remaining k − 1 = 9 subsets which
form the “training dataset”, and then tested by classifying
the cases in the test set using the model. This procedure is
repeated k = 30 times, always taking another one of the ten
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Pattern
Prevalence 

(Slow)

Prevalence 

(Rapid)
Homogeneity Degree

S1 9.33% 5.33% 64% 3

S2 2.67% 0.00% 100% 5

S3 4.00% 0.00% 100% 3

S4 50.67% 12.00% 81% 3

S5 4.00% 0.00% 100% 4

S6 6.67% 2.67% 71% 4

S7 4.00% 0.00% 100% 3

R1 0.00% 1.45% 100% 5

R2 0.00% 1.45% 100% 4

R3 4.35% 18.84% 81% 2

R4 0.72% 8.70% 92% 3

R5 0.00% 1.45% 100% 4

R6 0.00% 2.17% 100% 4

R7 0.00% 1.45% 100% 4

R8 2.17% 53.62% 96% 1

Figure 6: Decision tree pattern characteristics

parts in the role of the test set (re-randomizing the patients
into 10 new subsets and repeat the procedure 9 additional
times for a total of 300 tests). The average accuracy (propor-
tion of correctly classified observations), sensitivity (propor-
tion of correctly classified rapid progressors), and specificity
(proportion of correctly classified slow progressors) are then
reported as a quality measure of the proposed model in Table
4.

Accuracy Sensitivity Specificity
77.5% 80.4% 74.6%

Table 4: Cross validation of the J48 classification model

As can be seen, the decision tree model predicts the rate
of decline of kidney function among AASK samples with
high sensitivity (true positive rate for rapid progressors) and
specificity (true positive rate for slow progressors).

We have also generated receiver operating curves (ROC)
as a measure of the effectiveness of the LAD discriminant at
predicting GFR slope. As shown in Figure 7, the area under
the curve is 0.918.

Area = 0.918

1 – Specificity

S
en
si
ti
v
it
y

Figure 7: Receiver Operating Curves (ROC)

3 Survival Analysis
In this section we apply Kaplan-Meier survival analysis to
AASK samples to determine the significant individual SNPs
as well as the pairs of SNPs obtained in SNP-SNP analysis.
Kaplan-Meier analysis is one of the best and commonly used
survival methods to measure the fraction of subjects observ-
ing an event for a certain amount of time. In 1958, Edward
L. Kaplan and Paul Meier collaborated to publish a seminal
paper on how to deal with incomplete observations. Subse-
quently, the Kaplan-Meier curves and estimates of survival
data have become a familiar way of dealing with differing
survival times (times-to-event), especially when not all the
subjects continue in the study. “Survival” times need not re-
late to actual survival with death being the event; the “event”
may be any event of interest.

In AASK dataset we have had time-to-event data available
for all patients, where an “event” is death, dialysis, and/or
GFR event as shown in Tables 5 and 6.

Death/Dialysis
(DD)

Death/Dialysis/
GFR-Event (DDG)

Minimum 9.4 3.75
Mean± Std.Dev. 55.22± 14.61 49.59± 16.05

Median 52.4 49.5
Mode 65.2 48.6

Maximum 77.8 77.8

Table 5: Time-to-event information for AASK samples

Death Dialysis G-Event DD DDG
# occurrences 13 101 137 114 187

Table 6: Time-to-event information for AASK samples

Initial pre-processing of the AASK data has included
the removal of observations where time-to-event informa-
tion is missing and/or most SNPs are missing we have ob-
tained a dataset with 800 AASK patients and 113 SNPs. We
have considered “Death/Dialysis/GFR-Event” as our time-
to-event information and assumed that the data does not con-
tain any censored samples.

3.1 Survival Analysis of AASK - Individual SNPs
When we have applied the Kaplan-Meier analysis on the
data with 800 AASK patients and 113 SNPs, we have ob-
served that the SNP MMP3-K45E(A/G) appears to be the
most significant one. Of the 800 subjects analyzed, we were
missing data for one patient for this SNP. The other patients
appear to have similar curves. There were 97 patients ho-
mozygous with AA. They appear to have a slightly lower
survival rate than the other patients. KCN-2 was the second
most significant SNP in the analysis with a Kaplan-Meier
p-value of 0.0001. Of the 800 subjects analyzed, 1 was ho-
mozygous with TT for KCN-2. 705 were homozygous with
CC. 70 were CT and information was not available for 23 pa-
tients. Similarly, MMP2-C(-1306)T had the third most sig-
nificant p-value. However, only one patient analyzed was ho-
mozygous with TT and two patients had missing data. 720
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of the 800 subjects analyzed were homozygous for CC and
appear to have survival rates similar to those with CT at this
SNP. Based on our initial analysis we have further refined
the dataset by removing all those SNPs which contain the
same SNP value for all, except a few of the AASK samples.

Top 8 most significant SNPs (with p-value < 0.05) ob-
tained as a result of the Kaplan-Meier survival analysis of
800 AASK samples is presented in Table 7.

SNP
Kaplan – Meier

p-value

REN_4 0.006109041

SCNNIA ala663thr (G/A) 0.006985415

CYP11B2_rs1799998 0.003945369

GNAS FokI -/+ (T/C) 0.012371261

ACE A(-262)T 0.016874946

CYP3A4_rs2246709 0.0215345

PDE4D SNP42 A/G 0.039437293

AGTR1 G(-535)A 0.045274505

Table 7: Most significant SNPs predicting the survival of
AASK patients

Kaplan-Meier survival curves of the 8 most significant
SNPs are also presented in Figures 8-11.

Figure 8: Top two most significant SNPs predicting the
survival of AASK patients

3.2 Survival Analysis of AASK - SNP-SNP
Analysis

Next we analyzed pairs of SNPs and looked for SNPs that
appeared significant that previously did not appear individ-
ually significant. Multiple pairs of SNPs were found to be
significant with p-values less than 0.00001. In Table 8 we

Figure 9: Third and fourth most significant SNPs predicting
the survival of AASK patients

Figure 10: Fifth and sixth most significant SNPs predicting
the survival of AASK patients

Figure 11: Seventh and eighth most significant SNPs
predicting the survival of AASK patients

present the top 10 most significant pairs of SNPs obtained
by SNP-SNP survival analysis.

We remark that none of those SNPs obtained in SNP-SNP
analysis were significant predicting the events when ana-
lyzed individually. F7 arg353gln (G/A) appears most often
in Table 8, however, it had a p-value of 0.470 when Kaplan-
Meier analysis was applied on individual SNPs. SLC12A3-
rs1529927, the second most appearing SNP in pairwise
Kaplan-Meier analysis, had a p-value of 0.729 when an-
alyzed individually. Table 9 gives the the most significant
SNPs listed in Table 8 together with their p-values obtained
by Kaplan-Meier analysis on individual SNPs.
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SNP SNP
Kaplan-Meier

p-Value

ADRB2_1 F7 arg353gln (G/A) < 0.00001

CACNA_1 SLC12A3_rs1529927 < 0.00001

KCN_2 SLC12A3_rs1529927 < 0.00001

CYP3A4_rs2740574 SLC12A3_rs1529927 < 0.00001

F7 arg353gln (G/A) ADRB2_1 < 0.00001

F7 arg353gln (G/A) F13 P564L (C/T) < 0.00001

F7 arg353gln (G/A) MMP7 C(-153)T < 0.00001

F7 arg353gln (G/A) MMP12 N122S (A/G) < 0.00001

F7 arg353gln (G/A) PDE4D SNP26 A/G < 0.00001

F7 arg353gln (G/A) SELE ser128arg (A/C) < 0.00001

Table 8: Top 10 pairs of SNPs predicting the survival of
AASK patients

bf SNP p-value
ADRB2-1 0.252606625
CACNA-1 0.426118598

F7 arg353gln (G/A) 0.46993914
CYP3A4-rs2740574 0.477507156

KCN-2 0.51776224
MMP7 C(-153)T 0.71102964

SLC12A3-rs1529927 0.728967435
MMP12 N122S (A/G) 0.747659507
SELE ser128arg (A/C) 0.801858508
PDE4D SNP26 A/G 0.92248453

F13 P564L (C/T) 0.986444372

Table 9: Most significant SNPs obtained in SNP-SNP
analysis and their Kaplan-Meier p-values from individual

SNP analysis

4 Conclusions
In this study we apply a pattern-based classification method
and Kaplan Meier survival analysis method on AASK ge-
nomic and clinical data to identify clinical-genomic as well
as gene-gene interactions to find putative prognostic markers
for the progression of renal disease among AASK patients.
We analyze the African-American Study of Chronic Kidney
Disease (AASK) dataset and construct a decision-tree classi-
fication model consisting 7 combinatorial patterns of clinical
features and SNPs for slow progressors and 8 combinato-
rial patterns of clinical features and SNPs for rapid progres-
sors. The classification model uses only 4 clinical features
and 3 SNPs and has an accuracy of 78.4% obtained through
30 times 10-folding cross validation experiments. We then
apply Kaplan-Meier analysis to a dataset consisting of 800
AASK samples and 113 SNPs and identify significant indi-
vidual SNPs as well as the pairs of SNPs that are obtained
in SNP-SNP analysis.

The SNPs obtained in SNP-SNP analysis (p-value <
0.00001) are not among the ones obtained as significant in
individual SNP analysis (p-value < 0.05). We remark that
none of those SNPs obtained in SNP-SNP analysis were sig-
nificant predicting the events when analyzed individually. F7

arg353gln (G/A) appears most often in Table 8, however, it
had a p-value of 0.470 when Kaplan-Meier analysis was ap-
plied on individual SNPs. SLC12A3-rs1529927, the second
most appearing SNP in pairwise Kaplan-Meier analysis, had
a p-value of 0.729 when analyzed individually. This shows
the importance of considering combinatorial features (com-
binations of two or more SNPs).

We shall extend our analysis to obtain pattern-based sur-
vival analysis where we integrate the principles of classifica-
tion algorithms with powerful Kaplan-Meier survival analy-
sis. Clinical and genomic features identified in our classi-
fication as well as survival analysis will be used in a fu-
ture study to obtain comparison of the disease progression in
white patients with that in African-American patients, both
those with and those without apolipoprotein L1 (APOL1)
high-risk variants.
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