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Abstract

Constraint programming and game theory are two ac-
tive research domains providing a powerful framework
for modeling and solving several important applications
in computer science, artificial intelligence and decision
aiding in general. However, only little attention has been
paid to their possible connexions and relationships. In
this paper, we first prove the equivalence between the
concept of solution of a constraint satisfaction problem
and the Z-equilibrium of its associated game. Then, we
propose a backtrack search based procedure for com-
puting such equilibrium.

Introduction
Constraint programming (CP) is a flexible programming

paradigm in which problems are specified declaratively as
constraints between variables and a general search proce-
dure is responsible for finding a valuation of the variables
satisfying the constraints. Constraint Programming draws on
a wide range of methods from artificial intelligence, com-
puter science, databases, logic programming and operations
research. It has been successfully applied in a number of
fields such as scheduling, configuration, computational biol-
ogy and vehicle routing.

On the other hand, game theory is a branch of mathemat-
ics devoted to studying interactions among rational agents.
It can be used as framework for modeling and solving a vari-
ety of problems encountered in several application domains
such as economy, transportation and logistics, telecommuni-
cations and biology.

The rise of distributed/parallel computing made game the-
ory increasingly necessary for computer scientists to study
settings in which intelligent agents reason and interact with
other agents. One can cite, distributed constraint satisfac-
tion problems where the problem is modeled as a con-
straint network in which variables and constraints are dis-
tributed among multiple agents (Yokoo et al. 1992). Vari-
ous applications of Distributed Artificial Intelligence (DAI)
can be formalized as distributed CSPs (Béjar et al. 2005;
Yokoo and Hirayama 2000). In this dynamic, there are some
innovative work establishing relationships between game
theory and constraint satisfaction problems (CSP). Indeed,
(Ricci 1991) proposed a representation of a CSP as a non-
cooperative game with n players. He proved that each solu-

tion of a given CSP is also a Nash equilibrium of the asso-
ciated game. Furthermore, when the CSP is consistent, the
set of solutions of the CSP coincides with the set of admis-
sible Nash equilibria of the game. Another possible mod-
eling can be obtained by representing CSPs as cooperative
games (Bistarelli and Gosti 2009), aiming to solve a dis-
tributed CSP via naming game. Furthermore, in (Kolaitis
and Vardi 2000), the authors proved that the main consis-
tency concepts used to derive tractability results for CSPs
are intimately related to certain combinatorial pebble games,
called the existential k-pebble games. More precisely, they
particularly show that strong k-consistency is equivalent to
a condition on winning strategies for the duplicator player in
the existential k-pebble game.

We can also represent a game as a constraint satisfac-
tion problem solving. Bordeaux and Pajot adopted this
approach for computing Nash equilibrium (Bordeaux
and Pajot 2005). For the same purpose, simple backtrack
search methods have been adopted in (Porter, Nudel-
man, and Shoham 2008). In (Vickrey and Koller 2002;
Soni, Singh, and Wellman 2007), efficient algorithms based
on constraint satisfaction were proposed for computing
approximate Nash equilibria for arbitrary one-shot graphical
games. A similar approche was also proposed in (Soni,
Singh, and Wellman 2007) for solving repeated graphical
games. In (Apt, Rossi, and Venable 2008), the authors
have compared the notions of optimality in strategic game
and soft constraints. It is important to note that most of
the contributions in this domain focused on Nash equilib-
rium, a fundamental concept in game theory (Jiang 2007;
Porter, Nudelman, and Shoham 2008; Bordeaux and Pajot
2005).

In this paper, we deal with another related concept called
Z-equilibrium, and we prove its equivalence with a solution
of its associated CSP. As no algorithm exists in the literature
allowing us to compute Z-equilibrium, we exploit this the-
oretical results to propose a backtrack search procedure for
computing a Z-equilibrium of the CSP game.

Preliminary definitions and notations
The class of problems that constraint programming sys-
tems focus on are constraint satisfaction problems. A Con-
straint Network (CN) P is a pair (X , C) where X is a finite



set of n variables and C a finite set of e constraints. Each
variable X ∈ X has an associated domain, denoted DX ,
which contains the set of values allowed for X . Each con-
straint C ∈ C involves an ordered subset of variables of X ,
called scope and denoted scp(C), and has an associated re-
lation, denoted RC , which contains the set of tuples allowed
for its variables. The arity of the constraint C is given by
kC = |scp(C)|. A solution to a CN is the assignment of a
value to each variable such that all the constraints are satis-
fied. A CN is said to be satisfiable (or consistent) iff it admits
at least one solution. Constraint Satisfaction Problem (CSP)
consists in determining whether a given CN is satisfiable or
not. A CSP instance is then defined by a CN, and solving it
involves either finding one solution or proving its unsatisfia-
bility.

Representing a CSP as a Game
Solving a CSP may be reduced to the problem
of finding an equilibrium in a game (Ricci 1991;
Bistarelli and Gosti 2009; Kolaitis and Vardi 2000;
Apt, Rossi, and Venable 2008).

Let us consider a constraint network P = (X , C) and its
associated game G(P) (Ricci 1991):

G(P) = < I, {Si}i∈I , {Ui}i∈I >, (1)

◦ Each variable Xi ∈ X is associated to a player i. We note
by I = {1, . . . , n} the set of players involved in the game
G(P). There is a one to one mapping between the set of
variables X and the set of players I .

◦ Si = DXi
is the set of pure strategies associated to the

player i ∈ I i.e. there is a one to one mapping between
the values of the domain of the variable Xi and the pure
strategies of the player i.

◦ The utility function of the player i ∈ I is given by

Ui(s1, . . . , sn) =
∑

Cj∈C(Xi)

kCj × χCj (sj1 , . . . , sjkCj
) (2)

where s = (s1, . . . , sn) ∈ S =
∏n

i=1 Si is a complete in-
stantiation of the n variables of the CSP P corresponding
to a game issue (situation) of G(P) and C(Xi) defines the
set of constraints involving the variable Xi. For a con-
straint Cj ∈ C(Xi) with scp(Cj) = {Xj1 , . . . , XjkCj

}
and a game issue s, we note (sj1 , . . . , sjkCj

) the projec-

tion of s on the players {j1, . . . , jkCj
} ⊆ I . We define,

χCj
(sj1 , . . . , sjkCj

) =

{
1, if (sj1 , . . . , sjkCj

) ∈ RCj ,

0, otherwise.

The utility or payoff function of a player i ∈ I measures
the degree of satisfaction of the constraints involving Xi.
The payoff represents the number of constraints involving
Xi that the game issue satisfies, weighted by the arity of the
constraints.

As mentioned in (Ricci 1991), to express the relevance
or the hierarchy of the constraints, one could associate

a different weight for every constraint. Other weighting
schemes can also be defined by associating different weights
on variables or players.

In the sequel, we heavily use the following notations and
definitions:
1. si ∈ Si: the strategy chosen by a player i ∈ I;
2. s−i: a combination of strategies chosen by the opponents

of a player i ∈ I;
3. s = (si, s−i): an issue (situation) of the game;

4. S−i =
n∏

j=1,j 6=i

Sj : the set of all combinations of strategies

that can be chosen by the opponents of a player i ∈ I;

5. S = Si × S−i =
n∏

i=1

Si: the set of all the issues of the

game.

Strategy of Security and Security Gain
A player who doesn’t like taking risks could choose to
implement a secure strategy (also called maximin strategy)
which in the worst case scenarios, assures him a minimum
utility value, called security gain. It represents the largest
value that the player can be sure to get without knowing the
strategies of the other players.

By definition, we say that a strategy s∗i ∈ Si is a security
strategy for a player i ∈ I , if:

s∗i ∈ arg max
si∈Si

min
s−i∈S−i

Ui(si, s−i). (3)

The value of the expression max
si∈Si

min
s−i∈S−i

Ui(si, s−i) is

the gain of security of the player i ∈ I .

Equilibrium Concept
An equilibrium is an issue where each player has no

interest to update its behavior when the behavior of the
other players is known. Different equilibrium concepts are
defined in game theory.

Definition 1 (Nash Equilibrium) An issue s∗=(s∗i , s
∗
−i) ∈

S is a Nash equilibrium (in pure strategies) of the game
G(P), if:

Ui(s
∗
i , s
∗
−i) ≥ Ui(si, s

∗
−i), ∀si ∈ Si, ∀i ∈ I.

Admissible Nash equilibrium is a refinement of the con-
cept of Nash equilibrium.

Definition 2 Let s, s′ ∈ S be two issues of the game G(P).
We say that an issue s ∈ S dominates s′ ∈ S, if they satisfy
the following system of inequalities:

Ui(s) ≥ Ui(s
′), ∀i ∈ I,

where, at least, one of them is strictly satisfied (>).



Definition 3 (Admissible Nash equilibrium) ANash equi-
librium is said to be admissible, if it is not dominated by
any other Nash equilibrium.

Using Pareto optimality, we introduce another refinement
of the Nash equilibrium.

Definition 4 (Pareto-optimal Nash equilibrium) An issue
s∗ ∈ S is a Pareto-optimal Nash equilibrium of the game
G(P), if

(a) s∗ ∈ S is a Nash equilibrium of the game G(P); and
(b) another issue s ∈ S dominating s∗ ∈ S doesn’t exist.

The concept of Z-equilibrium is introduced by Zhukovskii
et al. (Zhukovskii and Chikrii 1994; Vaisbord and
Zhukovskii 1980) in deterministic differential games and
in two-player stochastic differential games by Gaidov in
(Gaidov 1975). The Z-equilibrium is based on the concept
of Pareto-optimality (Gaidov 1984; 1986b) and represents
further development in the theory in comparison with the
Nash-equilibrium (Gaidov 1986a).

Definition 5 (Z-equilibrium) An issue s∗ ∈ S is a Z-
equilibrium of the game G(P), if
(a) s∗ is an active equilibrium, i.e. ∀i ∈ I , ∀si ∈ Si,
si 6= s∗i , ∃t−i ∈ S−i such that Ui(si, t−i) ≤ Ui(s

∗); and
(b) s∗ ∈ S is Pareto optimal, i.e. another issue s ∈ S
dominating s∗ doesn’t exist.

The following properties of the Z-equilibrimu motivates
our choice for it as the most suitable concept of solution for
the game G(P):
Property 1 (Ferhat and Radjef 2008) Let s∗ = (s∗i , s

∗
−i) be

a Z-equilibrium of the game G(P).
(a) The condition stating that s∗ is an active equilibrium

guarantees its stability.
(b) Z-equilibrium is individually and collectively rational.
(c) As s∗ is Pareto optimal, it allows us to avoid the Tucker

paradox.

Indeed, as a Z-equilibrium is an active equilibrium, its sta-
bility is guaranteed because in such situation, any deviation
strategy of a player i ∈ I generates a reaction of his oppo-
nents that decreases his own gain. This reduction is not de-
sired by any rational player, so the stability of the situation
of the game is guaranteed.

Note that in game theory, rationality is a main hypothesis
which states that each player participating in the game
adopts strategies leading to an increase in its gain. Indi-
vidual rationality of Z-equilibrium is justified by the fact
that such an outcome guarantees to each player, a gain at
least equal to its security gain. Since this equilibrium is
Pareto optimal, it provides both the collective interest, and
avoids the Tucker paradox where many equilibriums may
exist and the choice of one of them is not always obvious

(Poundstone 1993).

From the definition of the utility function given in relation
(2), we deduce the following proposition:

Proposition 1 If s∗ ∈ S is a solution of the CSP P , then

Ui(s
∗) = max

s∈S
Ui(s), ∀i ∈ I. (4)

Remark 1 The relation (4) has been established in
(Ricci 1991) while considering sets of mixed strate-
gies, It remains true for sets of pure strategies. In-
deed, if s∗ is a solution of the CSP P , this means
that s∗ satisfies all the constraints of the set C. Hence,
χCj

(s∗j1 , . . . , s
∗
jkCj

) = 1, ∀Cj ∈ C(Xi), ∀i ∈ I . This

implies that Ui(s
∗) =

∑
Cj∈C(Xi)

kCj = max
s∈S

Ui(s), ∀i ∈ I .

The following theorem gives us the conditions of the
existence of a Z-equilibrium in pure strategies for a finite
normal game.

Theorem 1 The game G(P) defined in relation (1) admits
a Z-equilibrium in pure strategies.

Proof 1 The game G(P) associated to the CSP P is finite,
since the set of strategies Si for each player i ∈ I is non
empty and finite, keeping in mind that Si corresponds to the
domain DXi of the variable Xi in the CSP P .

For a finite game, the security gain

αi = max
si∈Si

min
s−i∈S−i

Ui(si, s−i)

exists for any player i ∈ I .

Let
A = {s ∈ S, Ui(s) ≥ αi, ∀i ∈ I}, (5)

be the set of all issues of the game for which each player
gets an utility at least equal to the security gain.

To prove that A is a non empty set, we note by sGi the
security strategy of the player i ∈ I , defined as follows:

αi = max
si∈Si

min
s−i∈S−i

Ui(si, s−i) = min
s−i∈S−i

Ui(s
G
i , s−i).

Let us consider the game issue generated from the choice by
each player’s security strategy i.e. sG = (sG1 , . . . , s

G
n ) ∈ S

with sGi ∈ Si, ∀i ∈ I .

We have:

Ui(s
G) = Ui(s

G
i , s

G
−i) ≥ min

s−i∈S−i

Ui(s
G
i , s−i);

min
s−i∈S−i

Ui(s
G
i , s−i) = max

si∈Si

min
s−i∈S−i

Ui(si, s−i) = αi.

Hence,
Ui(s

G) ≥ αi, ∀i ∈ I,



and A 6= ∅.

Fixing a n-vector λ = (λ1, . . . , λn) with λi ∈]0, 1[, ∀i ∈
I , let us compute

max
s∈A

n∑
i=1

λiUi(s) =

n∑
i=1

λiUi(s
∗). (6)

The max bound is reached on the point s∗ ∈ A, because
A is a finite set.

Let us show that s∗ is a Z-equilibruim:

We suppose that the player i ∈ I updates its strategy
si ∈ Si. We set

t−i = arg min
v−i∈S−i

Ui(si, v−i)

the strategy of the remaining players in response to strategy
updates of the player i ∈ I . We get:

Ui(si, t−i) = min
v−i∈S−i

Ui(si, v−i) ≤ max
si∈Si

min
v−i∈S−i

Ui(si, v−i),

max
si∈Si

min
v−i∈S−i

Ui(si, v−i) = αi ≤ Ui(s
∗),

this prove that the issue s∗ is an active equilibrium.

Let now prove that s∗ is Pareto optimal. We suppose the
contrary, i.e. there exists another issue s̃ ∈ S which verify
the system of inequalities

Ui(s̃) ≥ Ui(s
∗); ∀i ∈ I

where, at least one, is strictely verified. By multiplying each
of these inequalities with λi ∈]0, 1[, i ∈ I and computing
their sum, we deduce:

n∑
i=1

λiUi(s̃) >

n∑
i=1

λiUi(s
∗),

which contradicts the relation (6) and prove that s∗ is Pareto
optimal. As we proved that s∗ is an active equilibrium, then
it is also a Z-equilibruim.

We have the following relations between the different
equilibria of G(P):

Proposition 2
Any Pareto-optimal Nash equilibrium is both an admissi-

ble Nash equilibrium and a Z-equilibrium.

Proof 2 1. Let s∗ ∈ S be a Pareto optimal Nash equilib-
rium. Obviously, it is a Nash equilibrium. Let us prove
that it is also admissible.

Let s̃ ∈ S another Nash equilibrium. As s∗ is Pareto opti-
mal, then s∗ and s̃ ∈ S can not verify the following system
of inequalities

Ui(s̃) ≥ Ui(s
∗); ∀i ∈ I

where, at least, one of them is strictly satisfied. This mean
that s∗ is admissible.

2. Let us show that if s∗ ∈ S is a Pareto optimal Nash
equilibrium, then s∗ is a Z-equilibrium.

Let s∗ be a Pareto optimal Nash equilibrium. We have by
definition:

∀i ∈ I, ∀si ∈ Si, Ui(si, s
∗
−i) ≤ Ui(s

∗).

Hence, for each strategy updates si ∈ Si by any player
i ∈ I , it is enough for the remaining players to maintain
their strategies s∗−i of the Nash equilibrium, to obtain

Ui(si, s
∗
−i) ≤ Ui(s

∗),

we deduce that Nash equilibrium is an active equilibrium.
Additionally, as s∗ is Pareto optimal, we conclude that s∗
is a Z-equilibrium.

Equivalence Between a Solution of a CSP P
and a Z-equilibrium of G(P)

Let us consider a CSP P , and its associated game G(P).
The following results establish the relationships between the
solutions of the two problems.

Proposition 3 Each solution of the CSP P is a Z-
equilibrium of its associated game G(P).

Proof 3 Let s∗=(s∗1, . . . , s
∗
n)=(s

∗
i , s
∗
−i)∈ S be a solution

of the CSP P and G(P) its associated game.

From Proposition 1, we have:

Ui(s
∗) = max

s∈S
Ui(s), ∀i ∈ I. (7)

If a player i ∈ I changes his strategy s∗i by si ∈ Si,
si 6= s∗i then it’s sufficient that the remaining players main-
tain their strategy s∗−i of s∗ to have:

Ui(s
∗) = max

s∈S
Ui(s) ≥ Ui(si, s

∗
−i),

From where we deduce that s∗ is an active equilibrium of
the game G(P).

Let us proof that s∗ is Pareto optimal. Suppose the con-
trary, i.e there exists s̃ ∈ S verifying the following system of
inequalities

Ui(s̃) ≥ Ui(s
∗); ∀i ∈ I (8)

and for at least one indice j ∈ I , the following relation
holds,

Uj(s̃) > Uj(s
∗). (9)

The relation (9) contradicts the relation (7). Conse-
quently, s∗ is Pareto-optimal and we conclude that s∗ is a
Z-equilibrium of the game G(P).
Proposition 4 If the set of solution of the CSP P is not
empty, then any Z-equilibrium of its associated game
corresponds to a solution of P .



Proof 4 Let s∗ ∈ S be a Z-equilibrium of the game G(P)
associated to a CSP P . Suppose that s∗ is not a solution
of the CSP P . As the set of solutions of the CSP P is not
empty, then we set s̃ one of its solutions.

From Proposition 1, s̃ verifies the following relation:

Ui(s̃) = max
s∈S

Ui(s), ∀i ∈ I. (10)

As we assumed that s∗ is not a solution of P , this means
that s∗ does not satisfy some constraints. Let us note by
C(s∗) the set of constraints not satisfied by s∗ and consider
the set X (s∗) of the variables involved in the constraints
C ∈ C(s∗). Let i ∈ X (s∗). We have:

Ui(s̃) = Ui(s̃1, . . . , s̃n) =∑
Cj∈C(Xi)

kCjχCj (s̃j1 , . . . , s̃jkCj
)

=
∑

Cj∈C(Xi)\C(s∗)
kCj

1︷ ︸︸ ︷
χCj (s̃j1 , . . . , s̃jkCj

) +

∑
Cj∈C(s∗)∩C(Xi)

kCj

1︷ ︸︸ ︷
χCj

(s̃j1 , . . . , s̃jkCj
)

Ui(s̃) >
∑

Cj∈C(Xi)\C(s∗)
kCj

χCj
(s∗j1 , . . . , s

∗
jkCj

) +

∑
Cj∈C(s∗)∩C(Xi)

kCj

=0︷ ︸︸ ︷
χCj (s

∗
j1 , . . . , s

∗
jkCj

)

Ui(s̃) = Ui(s
∗).

Thus,

∀i ∈ X (s∗), Ui(s
∗) < Ui(s̃) = max

s∈S
Ui(s). (11)

In addition, as s∗ is a Z-equilibrium, then it is also Pareto
optimal, i.e for s̃ ∈ S we have either

Ui(s
∗) = Ui(s̃), ∀i ∈ I; (12)

or there exists k ∈ I such that

Uk(s̃) < Uk(s
∗). (13)

The relation (12) contradicts (11). Similarly, the relation
(13) contradicts (10). This terminates the proof.

Computing Z-equilibrium
The procedure we propose for computing Z-equilibrium is
based on backtrack search and on the proof of Theorem 1
stating the existence of a Z-equilibrium s∗ ∈ S in the game
G(P). The steps of this procedure are described as follows:

1. Define the constraint network P=(X , C) to solve, then
consider its associated game G(P);

2. Find all possible issues of G(P), by instantiating sequen-
tially the variables X of P . Then, store them in a set S;

3. Evaluate each element of S for all players using the utility
function defined by the relation (2). Store the evaluations
in a matrix G, where each row represents the gains of a
player in all the situations of the game;

4. Determine from the matrix G:

(a) The security gain for each player i ∈ I;
(b) The set A defined in relation (5) of all issues that guar-

anty for all the players an utility that is at least equal to
security gain.

5. Fix a n-vector λ with λj ∈]0, 1[, then evaluate each ele-
ment x ∈ A, by the function:

f(x, λ) =

n∑
j=1

λjUj(x), x ∈ A;

6. The Z-equilibrium is the issue

x∗ = arg(max
x∈A

f(x, λ)),

it corresponds to a solution of the constraint network P .

Conclusion
In this paper, we formulated a constraint satisfaction

problem as a noncooperative game with n-players. We
established the relationship between the solutions of a
constraint satisfaction problem and the Z-equilibrium of its
associated game. Then, a new backtrack search based pro-
cedure for computing Z-equilibrium is proposed. This work
opens several interesting perspectives. The implementation
and the experimental validation of our procedure is a short
term issue. We also plan to study the characteristics of the
solutions obtained by our procedure comparatively to the
classical solutions of the CSP.
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