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Abstract

Collective matrix factorization (CMF) is a popular technique
that factorizes multiple matrices jointly to boost the overall
factorization quality. However, it has been argued the CMF
assumptions are too strong: input matrices share a same rank
and a same factor. A few heuristics were proposed to relax
either assumption, but no theoretical justification was given.
In this paper, we promoted a prior solution to the theoretical
level and formalized an assumption-free model called partial
collective matrix factorization. It is based on the fact that any
two matrices (of the same row) admit some joint factoriza-
tion such that their factors are partially shared. We imported
the computational learning theory to analyze this model, and
proved its PAC bound for the matrix recovery task. Under
mild conditions, we also identified the optimal choice of pa-
rameters for the proposed model. Finally, we implemented a
simple algorithm motivated by the proposed model, and our
simulation results demonstrated its superiority.

Introduction
Collective Matrix Factorization (CMF) (Singh and Gordon
2008) is becoming a standard technique for boosting the
overall factorization quality of multiple related matrices. See
studies in (Yu, Yu, and Tresp 2005; Lippert et al. 2008;
Hofmann 2001; Singh and Gordon 2010; Bouchard, Yin,
and Guo 2013; Zhou et al. 2014; Ding, Guo, and Zhou 2014;
Yang, Jing, and Ng 2015) for example. These factors can be
later used for recovering missing values in the matrix, or as
the latent feature of an instance set for set classification or
set clustering. In its general form, CMF considers a finite
set of low rank matrices {Xi ∈ Rn×pi}i∈I of the same row
dimension, and jointly factorizes them based on the form

Xi = DAi for all i ∈ I, (1)

with the assumption that these matrices share a same factor
D ∈ Rn×k for some k � min{n, p}, and each matrix has
its own loading Ai ∈ Rk×pi . The factor typically has full
column rank, either by assumption or by algorithmic con-
straint, e.g. (Yu, Yu, and Tresp 2005; Tan et al. 2014).

It is noted that CMF has essentially adopted two (nested)
assumptions, that is, all matrices share a same rank and all
matrices share a same factor. However, as argued in prior
works, neither assumption is easy to satisfy in reality. In
(Agarwal, Chen, and Long 2011; Zhang, Cao, and Yeung

2010), authors relaxed the shared-factor assumption to that
each matrix has its own factor Di ∈ Rn×k and all Di’s are
related by being drawn from a same distribution. We notice
this relaxation has implicitly maintained the shared-rank as-
sumption by requiring factors to have the same dimension.
In (Klami et al. 2014), authors pointed out the limitation of
the shared-rank assumption and relaxed it to that each ma-
trix has its own factorDi ∈ Rn×ki and all factors are related
by having their column vectors chosen from a same vector
pool. While these efforts are plausible from a practical point
of view, they are all heuristic and the theoretical nature of
their solutions remains unknown to us.

In this paper, we promote (Klami et al. 2014) to a theoret-
ical level, and formalized an assumption-free factorization
model called partial collective matrix factorization (pCMF).
Our primary observation is that any set {Xi ∈ Rn×pi}i∈I
admits the following form of joint factorization

Xi = D̄Pi + D̃iQi for all i ∈ I, (2)

where factor D̄ ∈ Rn×c (with proper choice of c) is shared
by all matrices and factor D̃i ∈ Rn×ki may differ for dif-
ferent matrices. Then, we carefully cast the problem of ma-
trix recovery 1 by pCMF into a PAC framework (Kearns and
Vazirani 1994), and concluded that given a set of matrices
and a random sample of their observed entries, any esti-
mated factors that are able to exactly recover the observed
entry set can, with high probability, well recover all entries
of the matrices. Under mild conditions, we further identified
an optimal choice of model parameters c and ki’s that yield
the smallest error bound, that is, ki = rank(Xi) − c for
all i ∈ I and c =

∑m
i=1 rank(Xi) − rank([X1, ..., X|I|]),

where [X1, X2] denotes the row concatenation of X1, X2.
Finally, we implemented a simple pCMF algorithm, whose
simulation results supported our theoretical study.

Technically, we imported tools from computational learn-
ing theory into the analysis of factorization-based matrix
recovery problem, whose analysis is dominated by algebra
tools, e.g. (Gunasekar et al. 2015). During our investigation,
two interesting challenges arose. First, since we evaluated
the quality of a factor by its optimal recovery ability simi-
lar to (Maurer and Pontil 2010; Rudi, Canas, and Rosasco

1A matrix recovery task aims to accurately recover all entries in
a matrix based on a (observed) subset of its entries.



2013), one cannot follow the standard PAC argument and
simply decompose the optimal recovery error on a sample
of entries into the multiplication of optimal recovery errors
on each entry, which is always zero. Second, PAC assumes
sampling with replacement whereas in matrix recovery one
typically considers sampling without replacement. Although
authors in (Srebro, Alon, and Jaakkola 2004) have argued
that bounds obtained under these two settings shall not dif-
fer significantly, no specific treatment for sampling without
replacement was presented in that paper, and here we could
not apply their argument due to the first technical challenge.
As will be shown later, we tackled both challenges by di-
rectly bounding recovery error using the definition of proba-
bility under mild assumptions. Another interesting technical
treatment in our analysis is the conversion of a coupled two-
matrix factorization problem into three independent matrix
factorization problem, which we carefully realized by the
nature of pCMF. Finally, we established a connection be-
tween pCMF and the sum and intersection property of vec-
tor space (Warner 1965), so as to identify the optimal choice
of model parameters.

The rest of this paper is organized as follows: in section
two, we introduce the notations, concepts and assumptions
adopted in this paper; our theoretical results are presented in
section three, followed by an implementation of the pCMF
model and its simulation in section four; conclusions and
future works are discussed in section five.

Preliminaries
In this section we introduce the notations, concepts and as-
sumptions for presenting the main result. Additional notions
will be introduced in the proof.

Let us begin with the basic factorization model. Fix an
n ∈ N and for any p ∈ N, let Xp be a set of n-by-p matrices
and Ip := {(i, j); i = 1, .., n; j = 1, .., p} be its index set.
The entry ofX at row i and column j will be mainly denoted
byXi,j , and occasionally byX(i, j) for neat representation.
For any X ∈ Xp, let rank(X) denote its rank, span(X)
denote its column space and dom(X) := Rn×p. Let ||X||0
be its L0-norm and for any index set υ ⊆ Ip, define notation

||X||υ0 :=
∑

(i,j)∈υ

1{X(i, j) 6= 0}, (3)

where 1{E} is an indicator function taking 1 if event E is
true and taking 0 if E is false.

For any factorization of X that takes the form DA, we
shall call D ∈ Rn×k the factor, A ∈ Rk×p the loading and
assume k � min{n, p}. Define equivalent class

[D] := {D′ ∈ dom(D); span(D′) = span(D)}, (4)

which groups all factors that span the same subspace. To
simplify analysis, we will focus on a finite set of equivalent
classes by assuming the columns of all factors are drawn
from a vector space of dimension n over a finite field Fd.
This assumption can be satisfied if the matrix entries are de-
fined over a finite set, as in the application of recommenda-
tion system. Our assumption can also be viewed as a real-
ization of the finite hypothesis space assumption adopted in

PAC theory. Now, define

Dr := {[D];D ∈ Rn×r, rank(D) = r} (5)

as the collection of all possible equivalent classes. Then by
(Prasad 2010) its cardinality |Dr| is the Gaussian binomial
coefficient

(
n
r

)
d
. Note ifD is full rank, then allD′ ∈ [D] are

full rank. For conciseness, let us slightly abuse the notation
so that D ∈ Dr means D ∈ [D] for some [D] ∈ Dr.

We will focus on two-matrix factorization for clarity, but
our results can be easily generalized to multi-matrix setting.

Definition 1. For any X1 ∈ Xp1 and X2 ∈ Xp2 , we say
they admit a (c, k1, k2)-factorization if there exists factors
D̄ ∈ Dc, D̃1 ∈ Dk1 and D̃2 ∈ Dk2 such that

X1 = D̄P1 + D̃1Q1 and X2 = D̄P2 + D̃2Q2 (6)

for some associated loadings P1 ∈ Rc×p1 , P2 ∈ Rc×p2 ,
Q1 ∈ Rk1×p1 and Q2 ∈ Rk2×p2 .

The (c, k1, k2)-factorization will serve as the basic factor-
ization model in our analysis. By rewriting its definition as

X1 =
[
D̄, D̃1

] [
P1

Q1

]
and X2 =

[
D̄, D̃2

] [
P2

Q2

]
, (7)

it looks as if the factorization assumes two matrices partially
share their factors. In particular, by fixing k1 = k2 = 0, we
have X1 = D̄P1 and X2 = D̄P2, which is the factoriza-
tion model adopted by CMF. The following fact shows the
generality of our model and the limitation of CMF’s.

Fact 2. Given any two matrices X1 ∈ Xp1 of rank r1 and
X2 ∈ Xp2 of rank r2, there always exists some c, k1, k2 ≥ 0
satisfying c+k1 = r1 and c+k2 = r2, such thatX1 andX2

admit a (c, k1, k2)-factorization. However, this conclusion
may not be true if we fix k1 = k2 = 0.

The last statement holds trivially when r1 6= r2. Even when
r1 = r2, the conclusion is still invalid if two matrix factors
D̄’s are drawn from different equivalent classes in Dc.

In rest of the discussion, we will always assume t ∈ {1, 2}
when it is used to index the two matrices X1, X2 or their
parameters such as index sets, factors and loadings.

Notions related to learning
So far we have used notations D̄, D̃ (or, A,P,Q) to repre-
sent factors (or, loadings) that can exactly recover matrices.
Since these ‘ideal’ terms do not appear often in later analy-
sis, we will overload their notations to represent the estimate
of them in rest of the paper. The notations of ‘ideal’ terms
will be additionally introduced whenever used.

Let υt ⊆ Ipt be a sub-index set, whose elements are
assumed to be sampled uniformly from Ipt , but not nec-
essarily independently. This is an assumption adopted in
many analysis such as (Srebro, Alon, and Jaakkola 2004;
Candès and Recht 2009). Notice that υt naturally induces a
subset St of Xt where St(i, j) = Xt(i, j) for all (i, j) ∈ υt.
For this reason, we will simply call υt the sample of Xt, and
St the corresponding sample entries.



Definition 3. For any matrices X1 ∈ Xp1 and X2 ∈ Xp2
and their respective samples υ1 and υ2, a (c, k1, k2)-partial
CMF learner is an algorithm that, based on υt’s, estimates
a (c, k1, k2)-factorization admitted by X1, X2, and returns
a bag of estimated factors Θ̂ = (D̄, D̃1, D̃2). We say Θ̂ is
consistent on υt’s if there are Pt, Qt’s such that,

||Xt − (D̄Pt + D̃tQt)||υt0 = 0 for t = 1, 2. (8)

The quality of Θ̂ will be evaluated by its ability for matrix
recovery. To this end, define the matrix recovery error as

er(Θ̂) := inf
Pt,Qt

∑
t

||Xt − (D̄Pt + D̃tQt)||0/|I+|, (9)

where |I+| = |Ip1 |+|Ip2 |. This recovery error is essentially
counting the number of entries incorrectly recovered by Θ̂,
and we choose its form to facilitate the import of PAC theory.
It is noted if Xt is binary in {0, 1}, then ||Xt||0 = ||Xt||F
and our error becomes a variant of the reconstructive error in
(Maurer and Pontil 2010; Rudi, Canas, and Rosasco 2013).

Our analysis also involves singular matrix factorization,
whose notions largely parallel the ones we defined for CMF.
An X ∈ Xp is said to admit a k-factorization if X = D̈A

for some D̈ ∈ Dk andA ∈ Rk×p. Let υ ⊆ Ip be a sample of
X . A k-SMF learner estimates a k-factorization admitted by
X based on υ, and returns an estimated factor D. The factor
is said to be consistent on υ if ||X−DA||υ0 = 0 for someA.
The quality of D is evaluated by the matrix recovery error

er(D) := inf
A
||X −DA||0/|Ip|. (10)

Main Result
Our main result is stated as follows.

Theorem 4. For any matrices X1 ∈ Xp1 and X2 ∈ Xp2
and their respective random samples υ1 and υ2, let Θ̂ be
a bag returned by the (c, k1, k2)-pCMF learner. Then with
probability 2 at least 1 − δ, for all Θ̂ consistent on υt’s, we
have er(Θ̂) ≤ U(c, k1, k2), where

U(c, k1, k2) =
1

|υ1|
log

(
n

k1

)
d

+
1

|υ2|
log

(
n

k2

)
d

+
1

|υ+|
log

(
n

c

)
d

+

(
1

|υ+|
+

1

|υ1|
+

1

|υ2|

)
log

3

δ
,

(11)

and |υ+| = |υ1|+|υ2|. Further, let the optimal parameter be
(c∗, k∗1 , k

∗
2) := arg min(c,k1,k2) U(c, k1, k2). If c, k1, k2 ≤

n/2, then c∗ = rank(X1) + rank(X2) − rank([X1, X2])
and k∗t = rank(Xt)− c∗ for t = 1, 2.

Let us interpret the results in Theorem 1 here. First, the
bound has clearly inherited properties from the standard
PAC bound: we see U decreases as the ‘training sample size’

2The probability is taken over the random choice of υ1, υ2.

|υ1| and |υ2| increase, or as ‘confidence parameter’ δ de-
creases. A seemingly difference is thatU has weaker asymp-
totic guarantee with respect to |υ1| and |υ2|, since both num-
bers are bounded from above, partly due to the scheme of
sampling without replacement. This is in contrast to standard
PAC theory where the training sample can grow arbitrarily
large, partly due to its sampling with replacement scheme.
However, we also notice this difference does not degrade the
value of U , since our demand on the error bound has also
become looser, i.e. for precise recovery it suffices to bound
er(Θ̂) by 1/|Ipt | instead of an arbitrarily small ε. Another
observation is U decreases as the first three logarithm terms
increase. These terms arouse by a union bound over all pos-
sible equivalent classes inDc,Dk1 andDk2 respectively, and
correspond to the size of hypothesis space in PAC theory.

In addition to traditional implications, we also gained new
insights from Theorem 1, mainly through the identification
of optimal model parameters. Under mild conditions, we see
a trade-off between c and kt’s, and that a larger c and smaller
kt’s yields a smaller bound. This means the more partial
sharing between matrix factors, the better performance guar-
antee we can obtain for the pCMF model. We also see how
shared factor helps, i.e. the error contributed by shared factor
is more down-weighted by larger sample size |υ+|.

Justification of Theorem 1
In this section we prove Theorem 1. Our investigation began
with casting a single matrix recovery problem into the PAC
framework and proved its PAC bound, where we tackled the
challenges that υ is not sampled with replacement and the
sample recovery error cannot be simply decomposed into
the recovery error of each entry as PAC does. We then care-
fully re-cast the original two-matrix recovery problem into
three decoupled single matrix recovery problems by a con-
siderable amount of technical treatments, and applied earlier
analysis three times to yield the error bound for the pCMF
learner. Finally, we identified the optimal choice of model
parameters under mild conditions.

Bounding the error of a SMF learner
Recall the notations defined for single matrix factorization in
earlier section. For technical reasons, we will need to con-
sider the choice of loading and thus temporarily expand the
definition of er(D) to

erA(D) := ||X −DA||0/|Ip|. (12)

Clearly, er(D) = infA erA(D). To facilitate discussion, let
us additionally define the sample recovery error rate as

êr(D) := inf
A
êrA(D), (13)

where êrA(D) := ||X −DA||υ0/|υ|.
Note D is consistent on sample υ if êr(D) = 0. Then our

PAC bound for the k-SMF learner is stated as follows.

Lemma 5. For any matrix X ∈ Xp and its sample υ, let D
be a factor returned by the k-SMF learner. For any ε, δ > 0
and all D consistent on υ, with probability at least 1− δ, we



have er(D) ≤ ε if |υ| ≥ 1
ε

(
log
(
n
k

)
d

+ log 1
δ

)
. Further,

er(D) ≤ 1

|υ|

(
log

(
n

k

)
d

+ log
1

δ

)
. (14)

with probability 3 at least 1− δ.

Proof. The backbone of our proof follows standard PAC ar-
guments. We also take care of the additional challenges that
sample recovery error can no longer be simply decomposed
and sample is no longer drawn with replacement.

Let us first fix aD ∈ Dk and the size of υ. Consider such a
sample υ ⊆ Ip that, even if D is able to correctly recover all
entries in υ (i.e. êrA′(D) = 0 for someA′), it still fails on at
least a ε-fraction of the entire entry set Ip (i.e. er(D) > ε).
The chance of getting such misleading sample is

Pr{υ ∈ Ip; êrA′(D) = 0 ∧ er(D) > ε}
≤ Pr{υ ∈ Ip; êrA′(D) = 0 ∧ erA′(D) > ε}
≤ Pr{υ ∈ Ip; êrA′(D) = 0 | erA′(D) > ε}

≤
(

(1− ε)|Ip|
|υ|

)
/

(
|Ip|
|υ|

)
,

(15)

where the first inequality is by the definition of er(D), and
the last inequality is by the uniform sampling assumption
and the definition of probability. To be specific, the last prob-
ability counts the possible choice of υ whose entries are all
correctly recovered, given that at most (1 − ε)|Ip| entries
can be correctly recovered. Clearly, this count reaches its
maximum whenD correctly recovers exactly (1−ε)|Ip| en-
tries, leaving the maximum number of choices for υ, that is,
(1 − ε)|Ip| chooses |υ|. The denominator is simply a nor-
malizer so that the result remains a valid probability mass.

It is noted we could not simply decompose êr(D) = 0
into the sample recovery errors of each entry in υ as in PAC
analysis, because the latter error will always be zero by any
factor, leaving no uncertainty to bound. It is also noted inde-
pendent sampling assumption is not needed to derive (15).

Formula (15) applies to only one factor, and our next step
is to go through all possible factors in Dk to obtain a uni-
form bound. Note this is equivalent to go through one fac-
tor per equivalent class [D] and then through all possible
classes, because all D ∈ [D] share exactly the same sam-
ple/matrix recovery error on any υ, achieved with possi-
bly different loadings. For convenience, define the bad event
B(Di) := {êrA′i(Di) = 0 ∧ er(Di) > ε}. Then

P{υ;B(D1) ∨B(D2) ∨ ...}
= P{υ;B(Di1 ∈ [D]1) ∨B(Di2 ∈ [D]2) ∨ ...}

≤
|Dk|∑
j=1

P{υ;B(Dij ∈ [D]j)}

≤
(
n

k

)
d

(
(1− ε)|Ip|
|υ|

)
/

(
|Ip|
|υ|

)
.

(16)

It remains to bound the right-most term in (16) by δ and
solve for ε. Since direct solution is difficult to find, we rely

3The probability is taken over the random choice of υ.

on the relaxation that if p ≥ p′ ≥ `, then
(
p′

`

)
/
(
p
`

)
≤ (p

′

p )`.

Then
((1−ε)|Ip|

|υ|
)
/
(|Ip|
|υ|
)
≤ (1−ε)|υ| ≤ e−ε|υ|, and it suffices

to solve
(
n
k

)
d
e−ε|υ| ≤ δ for ε, which proves the lemma.

Let us briefly interpret the result in Lemma 1. Similar to
standard PAC bound, it says a larger sample (i.e. bigger |υ|)
yields a lower error bound. A new feature in our result is the
introduction of parameter k through

(
n
k

)
d
. Since this coef-

ficient is small when k is either very small or very large, it
seems both high rank and low rank factors help to improve
the recovery performance. However, we point out that the
option of high rank factor makes sense here only because
we have abstracted away the influence of loading estimation
by the definition of recovery error in (10). In practice, if the
matrix rank is very low, choosing a high rank factor will in-
troduce a great amount of redundant parameters that may
cause over-fitting. Thus a more practical option is to choose
low rank factors, which is widely seen in research.

It is also noted that, by the definition of k-SMF learner
we have k ≥ rank(X), otherwise no k-factorization can
be admitted by X . Although our bounding technique also
applies to the case k < rank(X), the resulted bound may
not be very meaningful in a PAC sense, i.e. the bound would
hold not mainly because it is rare that consistent bag has high
recovery error, as we wish to conclude, but largely because
it is rare that consistent bags can be returned.

Bounding the error of a pCMF learner
In this section we prove the error bound in Theorem 1. Let
us begin with a primary observation that, under the pCMF
model, a two coupled matrix factorization problem can be
re-cast into three independent latent matrix factorization
problems. Specifically, for any X1 ∈ Xp1 and X2 ∈ Xp2 ,
by (6) and Fact 1 there always exist decompositions

X1 = X̄1 + X̃1 and X2 = X̄2 + X̃2, (17)

so that estimating their admitted (c, k1, k2)-factorization ap-
pears as if we are estimating the c-rank factorization of
X̄1, X̄2 using D̄, and estimating the kt-rank factorization of
X̃t using D̃t. In this spirit, we have

||Xt − (D̄Pt + D̃tQt)||0
= ||(X̄t − D̄Pt) + (X̃t − D̃tQt)||0
≤ ||X̄t − D̄Pt||0 + ||X̃t − D̃tQt||0,

(18)

and thus overall∑
t

||Xt − D̄Pt − D̃tQt||0

≤ ||X̄1 − D̄P1||0 + ||X̃1 − D̃1Q1||0
+ ||X̄2 − D̄P2||0 + ||X̃2 − D̃2Q2||0

= ||X̃1 − D̃1Q1||0 + ||X̃2 − D̃2Q2||0
+ ||

[
X̄1, X̄2

]
− D̄ [P1, P2] ||0.

(19)

Formula (19) seems to be suggesting the task of bounding
the recovery error over two input matrices may be relaxed to



the task of bounding the recovery error over three indepen-
dent hidden matrices, namely, X̃1, X̃2 and

[
X̄1, X̄2

]
. Now,

although the goal is clear, to realize such relaxation under
the PAC framework involves a considerable amount of tech-
nical treatments, which are presented in rest of this section.

Let us firs introduce extra notions to facilitate discussion.
Let pυ denote a decomposition (depending on υ) of X1, X2

by the form (17). For any pυ , define related recovery errors

erυp (D̃t) := inf
Qt
||X̃t − D̃tQt||0 / |It|,

erυp (D̄) := inf
P ′ts
||
[
X̄1, X̄2

]
− D̄ [P1, P2] ||0 / |I+|,

êrυp(D̃t) := inf
At
||X̃t − D̄At||υt0 / |υt|,

êrυp(D̄) := inf
A′ts

∑
t

||X̄t − D̄At||υt0 / |υ+|,

êr(Θ̂) := inf
Pt,Qt

∑
t

||Xt − D̄Pt − D̃tQt||υt0 / |υ+|,

(20)

where |υ+| = |υ1|+ |υ2|.
Our first result is a connection between the input matrices

and the hidden matrices in terms of matrix recovery errors.
Lemma 6. For any pυ , we have

er(Θ̂) ≤ erυp (D̄) + erυp (D̃1) + erυp (D̃2). (21)

Proof. By taking infimum over Pt, Qt’s, we have

er(Θ̂) = inf
∑
t

||Xt − D̄Pt − D̃tQt||0 / |I+|

≤ inf(||X̃1 − D̃1Q1||0 + ||X̃2 − D̃2Q2||0
+ ||

[
X̄1, X̄2

]
− D̄ [P1, P2] ||0) / |I+|

= inf
P ′ts
||
[
X̄1, X̄2

]
− D̄ [P1, P2] ||0 / |I+|

+ inf
Q1

||X̃1 − D̃1Q1||0 / |I+|

+ inf
Q2

||X̃2 − D̃2Q2||0 / |I+|

≤ erυp (D̄) + erυp (D̃1) + erυp (D̃2).

(22)

The first inequality is based on (19) and the last inequality
is by relaxing |I+| ≥ |It|. Such relaxation is for simplify-
ing discussion, and our final bound would remain the same
without it, i.e., if instead we conclude er(Θ̂) ≤ erυp (D̄) +

erυp (D̃1)|I1|/|I+|+erυp (D̃2)|I2|/|I+|. To verify the second
equality, we rely on the following result

Lemma 7. (Wade 2003) Let A,B be nonempty sets and
define set A + B := {a + b; a ∈ A ∧ b ∈ B}. Then
inf(A+B) = inf A+ inf B.

Now, the equality holds because the three infimum terms are
independently taken over {P1, P2}, {Q1} and {Q2} respec-
tively, and thus we can split them by above lemma.

Based on Lemma 6, if ε = ε0 + ε1 + ε2, then by the
pigeonhole principle er(Θ̂) > ε implies at least one of the
following: erυp (D̄) > ε0 or erυp (D̃1) > ε1 or erυp (D̃2) > ε2.

If we manage to bound the probability for each inequality
over all consistent Θ̂ by δ/3, then by a union bound we can
bound er(Θ̂) > ε over all consistent Θ̂ by probability δ.
Take D̃t for instance, for any pυ define event

B̃t
pυ (Θ̂) := {êr(Θ̂) = 0 ∧ erυp (D̃1) > ε1}. (23)

We wish to conclude that

P{B̃tpυ (Θ̂1) ∨ B̃tp′υ (Θ̂2) ∨ ...} ≤ δ/3, (24)

where pυ and p′υ may be different. Our goal is to solve this
inequality by applying the earlier results on single matrix
recovery, so as to introduce parameters c, k1 and k2.

Notice any pυ on matrixXt naturally induces a decompo-
sition on its sample υt so that ῡt is the sample of X̄t and υ̃t
is the sample of X̃t. In essence, these samples have the same
index set, but different sample entries.

Example 8. Consider a pυ on Xt = [3, 5; 1, 7] that[
3 5
1 7

]
=

[
1 3.5

0.3 4

]
+

[
2 1.5

0.7 3

]
= X̄t + X̃t. (25)

Suppose the sample ofXt is υt = {(1, 1), (1, 2)}, whose en-
tries are {3, 5}. Then pυ naturally induces a sample ῡt =
{(1, 1), (1, 2)} of X̄t whose entries are {1, 3.5} and a sam-
ple υ̃t = {(1, 1), (1, 2)} of X̃t whose entries are {2, 1.5}.

Now we remark the following fact.

Fact 9. For any Θ̂ consistent on υt’s, there exists a pυ such
that D̄ is consistent on ῡ1, ῡ2 and D̃t is consistent on υ̃t.

The fact holds by constructing pυ: for X̄t, X̃t’s, their sample
entries can be obtained by using Θ̂ to reconstruct ῡt, υ̃t’s
where D̄, D̃t’s are consistent on accordingly; the rest entries
can be obtained by arbitrary decomposition on Xt’s.

A nice utility of Fact 2 is for any samples we can al-
ways choose that particular pυ so that êr(Θ̂) = 0 implies
êrυp(D̄) = 0 and êrυp(D̃t) = 0 for t = 1, 2. Then

P{B̃t
pυ (Θ̂)} ≤ P{êrυp(D̃t) = 0 ∧ erυp (D̃t) > εt}

≤ P{êr∗p(D̃t) = 0 ∧ er∗p(D̃t) > εt}
(26)

where er∗p(D̃t) is the recovery error based on a universal de-
composition p∗ that does not depend on samples. The sec-
ond inequality holds because our constraint does not really
consider the entry values (and thus which decomposed ma-
trix/sample is). In essence, the probability does no more than
counting the possible choices of υt whose indexing entries
are all correctly recovered while overall there is at least an
ε-fraction of entries incorrectly recovered, which is equiva-
lent to our previous single matrix recovery problem. Similar
argument has been applied in (Srebro, Alon, and Jaakkola
2004) by considering the 0-1 recovery loss function.

Define event B̃t
∗(D̃t) := {êr∗p(D̃t) = 0 ∧ er∗p(D̃t) > εt}



and let Θ̂i := {D̄i, D̃1,i, D̃2,i}. Then we have

P{B̃t
pυ (Θ̂1) ∨ B̃t

p′υ
(Θ̂2) ∨ ...}

≤ P{B̃t
∗(D̃t,1) ∨ B̃t

∗(D̃t,2) ∨ ...}

≤
(
n

kt

)
d

P{B̃t
∗(D̃t,1)}

≤
(
n

kt

)
d

(
(1− εt)|Ip|
|υt|

)
/

(
|Ip|
|υt|

)
.

(27)

The first inequality follows our argument in (26), and second
inequality follows a union bound and the fact that although
we started with all possible choice of Θ̂, many of them have
overlapping D̃t that can take at most

(
n
kt

)
d

distinct values.
Setting the right-most term in (27) less or equal to δ/3

and solving for εt, we have for all consistent Θ̂ and t = 1, 2,
with probability at least 1− δ/3

erυp (D̃t) ≤
1

|υt|

(
log

(
n

kt

)
d

+ log
3

δ

)
. (28)

Following the same argument, we also conclude

erυp (D̄) ≤ 1

|υ+|

(
log

(
n

c

)
d

+ log
3

δ

)
(29)

for all consistent Θ̂ with probability at least 1− δ/3.
Putting all together, recalling Lemma 6 and by a union

bound proves the error bound in Theorem 1.

Identifying the optimal parameters
In this section, we show how to identify the optimal choice
of parameters c and kt’s under mild conditions.

On one side, if c, k′ts ≤ n/2, then U(c, k1, k2) is mono-
tonically increasing with the parameters and thus one wishes
to choose small c and kt’s. On the other side, recall that
c+kt ≥ rank(Xt) by the definition of pCMF learner, which
guarantees the return of a consistent bag. As a result, the op-
timal choice is attained at c + kt = rank(Xt) for t = 1, 2,
which reveals a trade-off between c and kt’s.

Note that the contributions of c and kt to U(c, k1, k2) are
weighted differently, i.e. that of c is more down-weighted by
|υ+| and that of kt is less down-weighted by |υt|. Therefore,
a small error bound is achieved at large c and small kt.

It remains to identify the largest c (and the smallest kt)
that satisfies all above constraints. To this end, we notice a
connection between our problem and the following result.
Lemma 10. (Warner 1965) Let V1 and V2 be two subspaces
of Rn, and define V1 + V2 := {v + u; v ∈ V1, u ∈ V2} and
V1 ∩ V2 := {v; v ∈ V1 ∧ v ∈ V2}. Then

dim(V1) + dim(V2) = dim(V1 + V2) + dim(V1 ∩ V2),

where dim(V ) denotes the dimension of subspace V .
According to Lemma 10, if we manage to map dim(Vt)
to rank(Xt), map dim(V1 ∩ V2) to the largest c and map
dim(V1 + V2) to rank([X1, X2]), then we will prove the
optimal choice of parameters in Theorem 1. The next corol-
lary is based on a realization of these mappings.

Corollary 11. For any X1 ∈ Xp1 of rank r1 and X2 ∈ Xp2
of rank r2. Let c∗ denote the largest c such thatX1, X2 admit
a (c, r1 − c, r2 − c)-factorization. Then c∗ = r1 + r2 − r+,
where r+ := rank([X1, X2]).

Proof. Our proof is nothing more than mapping the notions
in our problem to the notions in vector space. Some mapping
turned out to be non-trivial.

Define Vt := span(Xt) for t = 1, 2. Then the first two
mappings are trivial, i.e. dim(Vt) = rank(Xt).

For mapping dim(V1 + V2) = rank([X1, X2]), we will
prove V1 + V2 = span([X1, X2]) from two directions. For
any vector v ∈ V1 +V2, it is a sum of two vectors, each from
one Vt and thus can be expressed as a linear column sum 4

of Xt. Therefore v can be expressed a linear column sum
of [X1, X2] and thus in its span, which proves one direction
V1 + V2 ⊆ span([X1, X2]). On the other hand, any u ∈
span([X1, X2]) is a linear column sum of [X1, X2], which
can always be split into two parts: the linear column sum of
X1 and that ofX2. Each split term is in one span(Xt) = Vt,
implying u ∈ V1 + V2 and thus span([X1, X2]) ⊆ V1 + V2.

It remains to prove c∗ = dim(V1 ∩ V2). For convenience,
denote k∗t = rt−c∗ and the (c∗, k∗1 , k

∗
2)-factorization admit-

ted by X1, X2 as Xt = D̄∗Pt + D̃∗tQt, where D̄∗ ∈ Rn×c∗

and D̃∗t ∈ Rn×k∗t . Since this is full-rank factorization, it
is easy to verify that span(Xt) = span([D̄∗, D̃∗t ]). Note
by definition c∗ = rank(D̄∗), and thus to prove c∗ =
dim(V1 ∩ V2), it suffices to prove span(D̄∗) = V1 ∩ V2.

Let us first prove span(D̄∗) ⊆ V1 ∩ V2. For any v ∈
span(D̄∗), since span(D̄∗) ⊆ span(Xt) for t = 1, 2, it
follows v ∈ span(X1) ∩ span(X2) = V1 ∩ V2. Next, we
prove V1 ∩V2 ⊆ span(D̄∗) by contradiction. Suppose there
exists a u ∈ span(X1) ∩ span(X2) but u /∈ span(D̄∗).
This means D̄∗ is not sufficient to express u. Without loss of
generality, let us assume we have to add one more column
q to D̄∗ for expressing u. Define D̄∗+ := [D̄∗, q] and we
have rank(D̄∗+) = c∗ + 1. Notice we can always construct
q by a linear column sum of [D̃1, D̃2], because u stays in
span(X1) ∩ span(X2). As a result, we have span(D̄∗+) ⊆
span(Xt) for t = 1, 2, which implies X1, X2 at least ad-
mit a (c∗+ 1, k∗1 − 1, k∗2 − 1)-factorization. This contradicts
with our premise that c∗ is the largest number of an admitted
factorization, and thus span(X1)∩span(X2) ⊆ span(D̄∗).
Combining two directions we conclude span(D̄∗) = V1∩V2
and thus c∗ = rank(span(D̄∗)) = dim(V1 ∩ V2).

Now, all notions in our problem are mapped to those in the
vector space. Applying Lemma 10 proves the corollary.

Implementation and Simulation
In this section we present an algorithm based on the pCMF
model and simulate its performance.

A simple pCMF-based algorithm
Let Wt ∈ Rn×pt denote the binary mask of sample υt such
that Wt(i, j) = 1 for all (i, j) ∈ υt, and Wt(i, j) = 0 for
all (i, j) /∈ υt. Pack Γ̂ := {P1, P2, Q1, Q2} and let A ◦ B

4A linear column sum of X is a sum of the columns of X



denotes the Hadarmat product of matricesA andB. We pro-
posed a simple pCMF algorithm that finds Θ̂, Γ̂ to minimize
the following objective function

f(Θ̂, Γ̂) =
∑
t

Wt ◦ ||Xt − D̄Pt − D̃tQt||2F

+ λ

(
||D̄||2F +

∑
t

||D̃t||2F + ||Pt||2F + ||Qt||2F

)
,

(30)

where || · ||F denotes the F -norm and λ is the regulariza-
tion coefficient. To find the optimum, we applied the same
alternate optimization method in (Singh and Gordon 2008).

Experimental data and protocol
To perform simulation, we construct a synthetic data set as
follows: first, set n = 200, p1 = 300, p2 = 500, λ = 0.01
and set both matrix ranks as 20 so that c+k1 = c+k2 = 20,
where c, k1, k2 will vary in experiment. Let En be an iden-
tity matrix of dimension n. Then the (ground truth) factors
are constructed by selecting from En the first k1 columns to
form D̃1, the last k2 columns to form D̃2, and the k1 + 1 to
k1 + c columns to form D̄. It is clear that different factors
span different subspaces. Then we randomly generatedAt of
dimension c+Kt-by-pt as loadings 5. Now, the two matrices
are generated by Xt = [D̄, D̃t]At for t = 1, 2, so that their
ranks are both 20 and they admit a (c, k1, k2)-factorization.

Three methods will be examined in experiment, includ-
ing our proposed pCMF algorithm, the classic CMF method
and independent matrix factorization (IMF) that factorizes
and recovers each matrix independently. For both IMF and
CMF, the size of their estimated factors (either independent
or shared) are set as n-by-20, and for pCMF, the size of es-
timates of D̄, D̃t are set as n-by-c and n-by-kt respectively.

During experiment, we varied c (and consequently k1, k2)
from 0 to 18. At each setting, we randomly chose 10% of
each matrix’s entries as a sample, i.e. |υt|/|Ipt | = 0.1, and
used the estimated factors and loadings to recover the rest
entries and reported the recovery error in terms of rooted
means squared error. At each setting of c, we repeated the
random choice of sample for 20 times and reported the av-
eraged error and the corresponding deviation in Figure 1.

Observations
From Figure 1 we see that CMF performed worse than IMF
when c is small, i.e. when X1 and X2 are actually sharing
very few part of their factors. When c increased, CMF im-
proved (since its assumption was better fulfilled) and started
to outperform IMF. This is the well-known negative trans-
fer effect observed in the literature. On the other hand, our
proposed pCMF method consistently outperformed IMF un-
der different values of c, showing that its effectiveness and
robustness in addressing negative transfer.

Another observation is that both CMF and pCMF gained
smaller variance compared with IMF at all values of c. This
is probably because their (partially) shared factor resulted

5The entries of At are drawn from a standard normal distribu-
tion and, as we verified, a typical At has full row rank
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Figure 1: Averaged RMSE of two matrices versus c∗. Re-
sults are averaged over 20 random trials and the mean error
bars with standard deviations are presented.

in less parameters for estimate, and the shared factor was
estimated with a larger sample (of size |υ+|).

Conclusion
In this paper we formalized a partial collective matrix factor-
ization model and imported the PAC framework from com-
putational learning theory to analyze its error bound. We
tackled the additional technical challenges that matrix en-
tries are not sampled with replacement, neither could we
decompose the sample error into the errors of each individ-
ual entry. We re-cast a coupled two-matrix recovery problem
into three independent latent-matrix recovery problems un-
der the PAC framework, and applied single matrix analysis
on each to derive the final error bound. Under mild condi-
tions, we also identified the optimal choice of parameters by
mapping our problem into the problem of relating subsapce
dimensions in a vector space, which provided guidance for
algorithm design.

Our partial factorization model not only enjoyed a theo-
retical guarantee, but also motivated a simple algorithm that,
as showed in our simulation, can avoid negative transfer and
consistently outperformed both CMF and IMF methods.
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