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Abstract

The Predictive Least Squares (PLS) model selection criterion
is known to be consistent in the context of linear regression.
For small sample sizes, however, it can exhibit erratic be-
havior. We show that this shortcoming can be amended by
incorporating a Student’s t-distribution into PLS. The result-
ing criterion is shown to be asymptotically equivalent to PLS
but significantly more robust for small sample sizes. A scale
parameter involved with the t-distribution can be used to in-
corporate an estimate of the scale of the noise; it is shown
that the new criterion is robust with regard to the choice of
this parameter and that its effect disappears asymptotically.
The recently proposed Sequentially Normalized Least Squares
(SNLS) criterion can be written in a form that exposes a simi-
lar interpretation with the exception that the scale parameter
of the t-distribution is estimated sequentially from the data.
Numerical experiments are presented; they indicate that using
a Student’s t-distribution enhances model selection perfor-
mance and that the benefit of the scale estimator of SNLS is
negligible.

Introduction
Linear regression has recently received attention in the se-
quential or online setting, where work has been done in
selecting a subset of the covariates (Määttä, Schmidt, and
Roos 2015) and finding a predictor that minimizes the worst-
case regret (Bartlett et al. 2015). The probabilistic case
that we consider also fits to the prequential framework of
Dawid (1984).

In this article, we concentrate on the subset selection prob-
lem, also called the model selection problem. We assume
a fixed design matrix Zn ∈ Rn×q that consists of the row
vectors z1, z2, . . . ,zn. Associated with each sample zt, we
have a response yt ∈ R. The goal is to select a non-empty
subset of the covariates, γ ⊆ {1, 2, . . . , q}, that strikes a
good balance between underfitting (poor prediction of the
training data) and overfitting (poor generalization for future
data).

In order to assess the performance of subset selection
methods, one often introduces the assumption that the data
(y1:n,Zn) comes from the linear model

yt = ztβ + εt, (1)

where β ∈ Rq is a fixed coefficient vector and the εt’s are
i.i.d. noise with E[εt] = 0 and E[ε2

t ] = σ2 < ∞. In this

setting, a subset selection method is said to be consistent if its
probability of selecting the γ that corresponds exactly to the
non-zero elements of β will approach one when the sample
size n tends to infinity. This γ is referred to as the true model
or subset.

For the batch case, where the score of a subset γ cannot
be represented in a sequential manner, there are numerous
methods (McQuarrie and Tsai 1998). Perhaps the most well-
known of these is the Bayesian Information Criterion (Akaike
1978; Schwarz 1978), or BIC, which is also known as the
Schwarz Information Criterion (SIC). For the model (1), the
BIC criterion is

BIC(y1:n,Zn, γ) := n log
(
σ̂2
n,γ

)
+ |γ| log n, (2)

where |γ| is the cardinality of γ and

σ̂2
n,γ :=

1

n

n∑
t=1

(
yi − ztβ̂(γ)

n

)2

. (3)

Here and later β̂(γ)
n ∈ Rq denotes the maximum likelihood

estimate of β computed using the first n samples and with
the restriction that the entries of β̂(γ)

n that are not present in
γ are forced to be zeros.

As for information criteria based on sequential prediction,
we are aware of only two (besides Bayesian methods that
admit a sequential interpretation). The first is the Predictive
Least Squares (PLS) criterion, introduced by Rissanen (1986),
which is defined as

PLS(y1:n,Zn, γ) :=

n∑
t=m+1

e2
t,γ

:=

n∑
t=m+1

(
yt − ztβ̂(γ)

t−1

)2

.

(4)

The starting indexm is typically set to q in order to make β̂(γ)
m

uniquely defined for all γ. Note that each term of the sum
depends only on the samples seen so far. PLS is known to be
consistent under certain reasonable regularity assumptions
(Wei 1992). The second sequential method is the Sequentially
Normalized Least Squares (SNLS) criterion (Rissanen, Roos,
and Myllymäki 2010). Its derivation is based upon the idea
of considering the errors êt,γ := yt − ztβ̂(γ)

t and using them
to construct a predictive distribution for each sample.



In the following, we start by discussing the similarities and
differences of PLS and SNLS. We will observe that PLS can
be seen as using a Gaussian distribution for prediction, while
SNLS relies on Student’s t-distribution and additionally a
sequential scale parameter estimator. We will attempt to iso-
late the effect of the t-distribution by constructing a “hybrid”
criterion which uses the t-distribution but replaces the scale
parameter estimator with a constant. We will show that the
hybrid is asymptotically equivalent to PLS and hence con-
sistent. We then present results from numerical simulations
to demonstrate that SNLS and the hybrid are indeed more
robust than PLS and the benefit of SNLS’s scale parameter
estimator is negligible. Finally, we discuss the results and
suggest some open problems for further study.

PLS and SNLS
The Predictive Least Squares Criterion
For an arbitrary constant λ2 > 0, the PLS criterion (4) has
the form

PLS(y1:n,Zn, γ)

2λ2
+

(n−m) log
(
2πλ2

)
2

= − log

n∏
t=m+1

f
(
yt | µ = ztβ̂

(γ)
t−1, λ

2
)

, (5)

where f( · | µ, λ2) is the Gaussian density function with
mean µ and variance λ2. Note that the affine transformation
of PLS on the left-hand side of (5) does not affect subset se-
lection. Therefore we may interpret PLS as doing sequential
prediction: to each new observation, it assigns a Gaussian
predictive density with a mean that depends on the previously
seen samples and an arbitrary fixed scale parameter.

We now introduce three regularity assumptions:

sup
n,i
|zn,i| <∞, (6)

lim
n→∞

(
1

n
ZT
nZn

)
= Λ, with Λ positive definite, (7)

lim
n→∞

(
1

n

n∑
t=1

zt,izt,jzt,kzt,`

)
= ωijk` ∈ R

for all i, j, k, ` ∈ {1, 2, . . . , q}.
(8)

In other words, we assume that the design matrix is
bounded (6) and has a well-behaving covariance structure (7).
Assumption (7) is sufficient for PLS to be strongly consis-
tent (Wei 1992, Theorem 3.4). The fourfold products in (8)
are more difficult to interpret, but a clear special case is the
existence of the limits limn→∞(1/n)

∑n
t=1 z

4
t,j for all j; in

any case, assumption (8) may be considered optional since is
only required in the consistency proof of SNLS and none of
our results rely on it.

The following theorem describes the behavior of
PLS(y1:n,Zn, γ) as the sample size grows. We will require
this result later in order to show that our PLS/SNLS hybrid
criterion is consistent.
Theorem 1. Assume (6) and (7). Then there exist some
0 ≤ ξ1 ≤ ξ2 <∞, dependent on γ, for which the following

inequalities hold:

σ2 + ξ1 ≤ p-lim inf
n→∞

(
PLS(y1:n,Zn, γ)

n−m

)
≤ p-lim sup

n→∞

(
PLS(y1:n,Zn, γ)

n−m

)
≤ σ2 + ξ2.

If we also assume (8), the above inequalities hold with almost
sure convergence and ξ1 = ξ2.

We postpone the proofs of all theorems to the appendix.

The Sequentially Normalized Least Squares
Criterion
The sequentially normalized least squares (SNLS) criterion
was introduced by Rissanen et al. (2010) and its asymptotic
theory was studied by Määttä et al. (2015). All results pre-
sented in this section may be found in the latter article.

SNLS is based on the idea of using not only the first t− 1
but also the t’th sample to predict the t’th response. Where
PLS uses the errors et,γ = yt − ztβ̂(γ)

t−1, SNLS instead con-
siders the terms

êt := yt − ztβ̂(γ)
t . (9)

Hence, it appears to “cheat” by using yt to help predict yt.
However, this is not the full story. The original derivation of
SNLS assigns Gaussian densities with a common fixed vari-
ance to the êt,γ’s and optimizes the variance parameter over
the product of the densities. The end result of the derivation
can be written as

SNLS(y1:n,Zn, γ) =

− log

n∏
t=m+2

g

(
yt | ν = t−m− 1, µ = ztβ̂

(γ)
t−1,

λ2 =
τ̂t−1,γ

(1− dt,γ)2

)
, (10)

where g( · | ν, µ, λ2) is the density of the non-standardized
Student’s t-distribution:

g(y | ν, µ, λ2) :=
Γ(ν+1

2 )

Γ(ν2 )
√
πνλ2

(
1 +

1

ν

(y − µ)2

λ2

)− ν+1
2

,

and where the building blocks of λ2 are

1− dt,γ =
det(ZT

t−1,γZt−1,γ)

det(ZT
t,γZt,γ)

and

τ̂t−1,γ =
1

t−m− 1

t−1∑
s=m+1

(1− ds,γ)2 e2
s,γ ,

where Zt,γ indicates the submatrix of Zt with the columns
indexed by γ. Note that in (10), the predictive distribution
used for yt does not use yt in its parameters, so the apparent
cheating in (9) disappears.

Consider the parameters to the Student distribution in (10).
The integer ν = t−m− 1 makes the predictive distribution



closer and closer to a Gaussian density as the number of sam-
ples increases. The mean parameter µ takes the same value
as in PLS. The scale parameter λ2, which asymptotically
becomes the variance of the predictive distribution, consists
of two terms with the following interpretations: If the εt’s
follow a zero-mean normal distribution, the number dt,γ can
be interpreted as the Fisher information ratio of zt,γ with
respect to Zt,γ (Wei 1992, pp. 4–5) and will tend to zero in
all reasonable situations. The variance estimator τ̂n,γ agrees
with σ̂2

n,γ in the limit.
Equation (10) can be written in the computationally sim-

pler form

SNLS(y1:n,Zn, γ) =

(
n−m

2

)
log (τ̂n,γ)

+ log

(
det(ZT

n,γZn,γ)

det(ZT
m,γZm,γ)

)

− 1

2
log
(
e2
m+1,γ

)
+ c(n,m),

(11)

where c(n,m) does not depend on the data and thus does
not affect subset selection. There are also various asymptotic
simplifications of SNLS. In particular, we have

SNLS(y1:n,Zn, γ) =

(
n−m

2

)
log (2πeτ̂n,γ)

+

(
2|γ|+ 1

2

)
log n+ o(log n).

(12)
Sincem is a constant and τ̂n,γ is convergent, we may consider
the further simplified form

SNLSa(y1:n,Zn, γ) := n log (τ̂n,γ) + 2|γ| log n (13)

which will still select the same subset as (10) when the sample
size is large enough.

It is interesting to compare (13) to BIC (see eq. (2)). It can
be seen that SNLS penalizes twice as much for the number of
parameters. On the other hand, if γ contains the true model,
then n log(τ̂n,γ) = n log(σ̂2

n,γ)−|γ| log n+o(log n) almost
surely and SNLS becomes asymptotically equivalent to BIC.

We also mention that SNLS was originally derived with
the assumption that the noise terms εt follow a Gaussian
distribution; remarkably, however, all the asymptotic results
hold for all noise distributions with a finite fourth moment.

The PLS/SNLS Hybrid Criterion

Compare the log-product forms of PLS (5) and SNLS (10).
They are similar in that they use the same location parameter
µt = ztβ̂

(γ)
t−1 for the t’th sample, but they differ in the choice

of the predictive distribution and whether they attempt to
estimate the scale of the responses yt. We may attempt to
isolate the effect of the predictive distribution by replacing
the Gaussian distribution in PLS by a Student’s t-distribution

with a constant scale parameter. The resulting criterion is

Hybrid(y1:n,Zn, γ) :=

− log

n∏
t=m+2

g
(
yt | ν = t−m− 1, µ = ztβ̂

(γ)
t−1, λ

2
)
(14)

where λ2 > 0 is a fixed constant. The only difference be-
tween (14) and SNLS is that the scale parameter estimator
has been replaced by a fixed value. Since the variance of the
non-standardized Student’s t-distribution is νλ2/(ν − 2) for
ν > 2, the value λ2 may be interpreted as the noise variance.

The hybrid can also be written in the form

Hybrid(y1:n,Zn, γ) = h(n,m, λ2)

+

n∑
t=m+2

(
t−m

2

)
log

(
1 +

(yt − ztβ̂(γ)
t−1)2

λ2(t−m− 1)

)
(15)

where the function h(n,m, λ2) hides terms independent of
the data. Equation (15) is highly reminiscent of PLS in its
traditional form (4). Note that unlike with PLS, the scale pa-
rameter λ2 does in general affect the relative scores assigned
by the hybrid to various models.

The following theorem shows that the hybrid is asymptoti-
cally equivalent to PLS.

Theorem 2. Denote

γ̂PLS(n) = arg min
γ∈Γ

PLS(y1:n,Zn, γ) and

γ̂Hybrid(n) = arg min
γ∈Γ

Hybrid(y1:n,Zn, γ).

Then we have

lim
n→∞

Pr [γ̂PLS(n) = γ̂Hybrid(n)] = 1.

Numerical Experiments
In order to evaluate the performance of various criteria,
we performed an experiment with synthetic data sets. For
each pair (n, k), with n = 100, 120, . . . , 200 and k =
1, 2, . . . , 10, we generated one thousand data sets as fol-
lows. First, the elements of a vector µ ∈ R9 are drawn
independently from Cauchy(0, 1), and a covariance matrix Σ
is drawn from Wishart(9−1I9, 9) in order to produce corre-
lations between variables. Then the row vectors zi,2:10 are
drawn from the multivariate normal distribution N (µ,Σ).
The intercept is included by setting each zi,1 to one. The first
k elements of β are drawn from the distribution obtained by
restrictingN (0, 1) to the domain outside the interval (−1, 1),
and the remaining 10− k elements of β are set to zeros. The
response vector is obtained by y1:n = Znβ + ε1:n, where
the elements of ε1:n are drawn independently from the zero-
mean Laplace distribution with a standard deviation of two.

The purpose of disallowing coefficients from the interval
(−1, 1) is to make the model selection problem more tractable
by ensuring that the effects of the variables in the true model
are non-negligible even for small sample sizes. For the noise
terms, we have used the Laplace distribution because its



heavy tails should provide more challenge to the robustness
of the various criteria. The Laplace distribution also has a
finite fourth moment, as required by the consistency proof of
SNLS.

For every data set, we computed the scores of all sub-
sets γ ⊇ {1} given by BIC (2), PLS (4), SNLS (10),
SNLSa (13), and the hybrid (14). For the hybrid crite-
rion, we used three different values for the scale parameter:
λ2 = 0.01, λ2 = 1, and λ2 = 100. We then noted the rank
assigned to the true subset γ = {1, 2, . . . , k} by each crite-
rion. Figure 1 shows the median rank of the true model. The
error bars show the upper and lower quartiles. We display the
pooled results for all k = 1, 2, . . . , 10, and also the individual
plots for k = 1, 5, 10.

It should be noted that our inclusion of BIC among the
criteria studied is primarily to provide a baseline. Since
BIC is not a predictive criterion, its results are not directly
comparable to those of PLS, SNLS and the hybrid.

In the case k = 1, where the responses are just a constant
plus noise, all criteria except the hybrid with λ2 = 0.01
perform extremely well. BIC and SNLSa slightly outperform
the others. PLS tends to favor simple models and accordingly
performs better than SNLS.

For k = 5, the results for the various criteria are quite
similar, again with the exception of the hybrid with λ2 =
0.01. BIC and SNLSa are still the winners, with the hybrid
with λ2 = 1 being slightly better than the rest.

In the complex model case k = 10, one starts to see
more differences: BIC is matched with the hybrid with λ2 ∈
{0.01, 1}. PLS is clearly the worst of the criteria considered,
with the rest clustered in between.

When the results for all k = 1, 2, . . . , 10 are combined, it
becomes clear that BIC performs the best, with SNLSa and
the hybrid with λ2 = 1 competing for the second place. PLS
and the hybrid with λ2 = 0.01 perform slightly worse than
others. The rest of the criteria are quite close to each other.

Discussion and Open Problems
We have proposed a new subset selection criterion for linear
regression. The criterion is essentially a robust variant of the
PLS criterion, and it can also be interpreted as a simplification
of SNLS; hence, it may be viewed as a PLS/SNLS hybrid. We
have shown that the new criterion is asymptotically equivalent
to PLS and thus consistent.

Our numerical results indicate that the hybrid usually out-
performs PLS, especially when the underlying model is com-
plex. Of the criteria than can be written in the log-product
form, the hybrid with λ2 = 1 outperforms not only PLS but
also SNLS. This is perhaps not surprising as the parameter
λ2 can be interpreted as an estimate of the noise variance
and the variance of the noise used in the simulated data was
always Var[εi] = 4. However, it should be noted that the
hybrid performed quite well with λ2 = 100, so the choice
of the scale parameter appears to be quite robust at least to
overestimation.

Our results indicate that it is possible for a sequential
criterion to match and even exceed the performance of a batch
criterion such as BIC (see the k = 10 case in Figure 1). We

are optimistic that future developments in sequential criteria
will bring further improvements.

As for directions for future research, we have made some
preliminary experiments with a modification of the hybrid
that optimizes the scale parameter λ2 to minimize eq. (14).
The optimization problem might be convex, but we do not
think it has a closed-form solution. Proving or disproving
consistency of this criterion, as well as evaluating its em-
pirical performance, would be an interesting topic of study.
Alternatively, one might try replacing the scale parameter
estimator of SNLS by the simpler σ̂2

n,γ and see if it affects
consistency or subset selection performance. Also of interest
is the effect of the Fisher information ratio in the SNLS scale
estimator.
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Appendix: Proofs of Theorems
The proofs of our theorems require the following result con-
cerning the PLS error terms et.

Lemma 3. The summands of PLS satisfy E[e2
t,γ ] = σ2 +

E[(zt(β − β̂(γ)
t−1))2], and if we assume (6) and (7), then

supt E[e2
t,γ ] <∞.

Proof. We decompose

e2
t,γ =

(
yt − ztβ̂(γ)

t−1

)2

=
(
yt − ztβ + ztβ − ztβ̂(γ)

t−1

)2

=
[
εt + zt

(
β − β̂(γ)

t−1

)]2
= ε2

t︸︷︷︸
(a)

+ 2εtztβ︸ ︷︷ ︸
(b)

− 2εtztβ̂
(γ)
t−1︸ ︷︷ ︸

(c)

+
[
zt

(
β − β̂(γ)

t−1

)]2
︸ ︷︷ ︸

(d)

.

(16)

Clearly E[ε2
t ] = σ2 and E[2εtztβ] = 0. The expected value

of (c) is also zero due to the fact that the random variables εt
and ztβ̂

(γ)
t−1 are independent.

Under assumptions (6) and (7), it can be shown that the
vectors β̂(γ)

t−1 converge to a limit almost surely (Määttä,
Schmidt, and Roos 2015). This and (6) imply that the terms
[zt(β−β̂(γ)

t−1)]2 are uniformly bounded with respect to t.

Proof of Theorem 1. Consider first the case where we in-
clude assumption (8). Then the claim follows from The-
orem 4.1.1 of Wei (1992), which states that

PLS(y1:n,Zn, γ) =

nσ̂2
γ + (log n)

[
pσ2 + tr(Γ−1G̃)

]
(1 + o(1)) a.s.
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Figure 1: The rank of the true model, as given by various criteria, plotted against increasing sample sizes. Displayed are the
median ranks over 1000 experiments; the error bars show the upper and lower quartiles.



where σ̂2
γ is defined as in (3), p = |γ|, and Γ−1 and G̃ are

limit matrices (independent of n) whose existence is implied
by assumptions (7) and (8), respectively (Määttä, Schmidt,
and Roos 2015). It is known that σ̂2

γ → σ2 + ξ almost surely
as n → ∞, where the value of ξ ≥ 0 depends on γ. The
claim follows with ξ = ξ1 = ξ2.

For the case where assumption (8) does not hold, we sepa-
rately consider each of the components (a)–(d) of (16).

(a) By the strong law of large numbers, it holds almost
surely that (n−m)−1

∑n
t=m+1 ε

2
t → σ2 as n→∞.

(b) The terms 2εtztβ have zero mean, and their variances
are bounded because of assumption (6), so the Kolmogorov
Criterion for the strong law of large numbers (Feller 1968,
p. 259) applies and (n−m)−1

∑n
t=m+1 2εtztβ → 0 almost

surely.
(c) The random variables 2εtztβ̂

(γ)
t−1 are more tricky, be-

cause they are not independent for different values of t. We
will use a variation of the weak law of large numbers that
applies to a sequence of dependent random variables with a
common expected value, bounded variances, and pairwise
covariances that are upper-bounded by zero (Feller 1968,
p. 262). Since εt and ztβ̂

(γ)
t−1 are independent, the expecta-

tion E[2εtztβ̂
(γ)
t−1] equals zero, and

Var
[
2εtztβ̂

(γ)
t−1

]
= 4σ2 Var

[
ztβ̂

(γ)
t−1

]
.

Now, define the diagonal matrix R(γ) ∈ Rq×q by setting
R

(γ)
ii = 1 if i ∈ γ and R(γ)

ii = 0 otherwise. It is known that

β̂
(γ)
t−1 =

(
1

t− 1

(
Zt−1R

(γ)
)T (

Zt−1R
(γ)
))−

×
(

1

t− 1
ZT
t−1Zt−1

)
β

+

(
1

t− 1

(
Zt−1R

(γ)
)T (

Zt−1R
(γ)
))−

×
(

1

t− 1
ZT
t−1ε1:t−1

)
where ( · )− denotes the Moore–Penrose pseudoinverse
(Määttä, Schmidt, and Roos 2015, proof of Lemma 2). This
and assumptions (6) and (7) imply that we may write

ztβ̂
(γ)
t−1 = c

(γ)
t +

1

t− 1

t−1∑
i=1

C
(γ)
t,i εi, (17)

where the numbers c(γ)
t and C

(γ)
t,i are bounded constants.

From (17) it is easy to see that Var[ztβ̂
(γ)
t−1] and hence

Var[2εtztβ̂
(γ)
t−1] are bounded. Moreover, when s < t,

Cov[−2εszsβ̂
(γ)
s−1,−2εtztβ̂

(γ)
t−1]

= E[4εszsβ̂
(γ)
s−1εtztβ̂

(γ)
t−1]

= E[εt] E[4εszsβ̂
(γ)
s−1ztβ̂

(γ)
t−1] = 0.

Hence the weak law of large number holds:

p-lim
n→∞

1

n−m

n∑
t=m+1

2εtztβ̂
(γ)
t−1 = 0.

(d) By Lemma 3, the terms [zt(β− β̂(γ)
t−1)]2 are uniformly

bounded with respect to t.
Combining the contributions of components (a)–(c), we

have

p-lim
n→∞

1

n−m

n∑
t=m+1

(
ε2
t + 2εtztβ − 2εtztβ̂

(γ)
t−1

)
= σ2.

Since the components (d) are non-negative and bounded, the
claim follows.

Proof of Theorem 2. Define an = Hybrid(y1:n,Zn, γ) −
h(n,m, λ2) and bn = PLS(y1:n,Zn, γ). In other words,

an =

n∑
t=m+2

(
t−m

2

)
log

(
1 +

e2
t,γ

λ2(t−m− 1)

)
and

bn =

n∑
t=m+1

e2
t,γ .

Note that the sequence (bn) is monotone and, by Theo-
rem 1, almost surely divergent. Therefore, the classical
Stolz–Cesàro theorem (Stolz 1885; Cesàro 1888) holds with
probability one:

lim inf
n→∞

an+1 − an
bn+1 − bn

≤ lim inf
n→∞

an
bn
≤ lim sup

n→∞

an
bn

≤ lim sup
n→∞

an+1 − an
bn+1 − bn

.

Recall that x/(1 + x) ≤ log(1 + x) ≤ x for x > −1
(Abramowitz and Stegun 1972). We immediately have

lim sup
n→∞

an+1 − an
bn+1 − bn

= lim sup
n→∞

(
n−m+ 1

2e2
n+1,γ

)
log

(
1 +

e2
n+1,γ

λ2(n−m)

)

≤ lim sup
n→∞

(
n−m+ 1

2e2
n+1,γ

)(
e2
n+1,γ

λ2(n−m)

)

= lim sup
n→∞

n−m+ 1

2λ2(n−m)
=

1

2λ2

almost surely (that is, unless e2
t = 0 for infinitely many n, an

event of probability zero1).
Going to the other direction,

p-lim inf
n→∞

an+1 − an
bn+1 − bn

= p-lim inf
n→∞

(
n−m+ 1

2e2
n+1,γ

)
log

(
1 +

e2
n+1,γ

λ2(n−m)

)

≥ p-lim inf
n→∞

(
n−m+ 1

2e2
n+1,γ

)(
e2
n+1,γ

e2
n+1,γ + λ2(n−m)

)

= p-lim inf
n→∞

n−m+ 1

2e2
n+1,γ + 2λ2(n−m)

,

1Note that the random variables εt may be discrete, so it is
possible that Pr[εt = 0] > 0. However, if εt 6= 0 for infinitely
many t (this has probability 1), then this forces e2t to be non-zero
for some t, and henceforth it can never become exactly zero again.



and for every 0 < δ < 1/(2λ2),

Pr

[∣∣∣∣∣ n−m+ 1

2e2
n+1,γ + 2λ2(n−m)

− 1

2λ2

∣∣∣∣∣ ≥ δ
]

= Pr

[ ∣∣λ2 − e2
n+1,γ

∣∣
2λ2e2

n+1,γ + 2(n−m)λ4
≥ δ

]

≤ Pr

[
λ2 + e2

n+1,γ

2λ2e2
n+1,γ + 2(n−m)λ4

≥ δ

]

= Pr

[
e2
n+1,γ ≥

2(n−m)λ4δ − λ2

1− 2λ2δ

]
.

By Lemma 3, E[e2
n+1,γ ] is uniformly bounded with regard

to n. Hence, Markov’s inequality implies that the above tends
to zero as n→∞, that is,

p-lim
n→∞

n−m+ 1

2e2
n+1,γ + 2λ2(n−m)

=
1

2λ2
.

Combining the results above, the Stolz–Cesàro theorem
implies that

p-lim
n→∞

an
bn

=
1

2λ2

and our claim follows.
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annales de mathématiques 3(7):49–59.
Dawid, A. P. 1984. Statistical theory: The prequential
approach. J. Roy. Statist. Soc. Ser. A 147(2):278–292.
Feller, W. 1968. An Introduction to Probability Theory and
Its Applications, volume 1. New York, NY: John Wiley &
Sons, 3rd edition.
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