
Kernelization, Generation of Bounds, and the Scope of Incremental Computation
for Weighted Constraint Satisfaction Problems

T. K. Satish Kumar∗
Computer Science Department

University of Southern California
tkskwork@gmail.com

Abstract

In this paper, we present an algorithmic framework for ker-
nelization of combinatorial problems posed as weighted con-
straint satisfaction problems (WCSPs). Our kernelization
technique employs a polynomial-time maxflow-based algo-
rithm to fix the optimal values of a subset of the variables in
a preprocessing phase. It thereby reduces the set of variables
for which exhaustive search is eventually required to all but
a small kernel. We present some implications of this algo-
rithmic framework and show that it can be used to generate
intelligent lower and upper bounds for the costs of optimal so-
lutions to WCSPs. We also show that it can be used to study
the scope of incremental computation for WCSPs.

Introduction
A weighted constraint satisfaction problem (WCSP) is a
generalized optimization version of a constraint satisfaction
problem (CSP) in which the constraints are no longer “hard”
but are extended by associating non-negative costs to the tu-
ples (Bistarelli et al. 1996). The goal is to find an assignment
of values to all the variables from their respective domains
such that the total cost is minimized.

More formally, a WCSP is defined by a triplet 〈X ,D, C〉
where X = {X1, X2 . . . XN} is a set of variables and
C = {C1, C2 . . . CM} is a set of weighted constraints on
subsets of the variables. Each variable Xi is associated with
a discrete-valued domain Di ∈ D; and each constraint Ci

is defined on a certain subset Si ⊆ X of the variables. Si

is referred to as the scope of Ci; and Ci specifies a non-
negative cost for every possible combination of values to the
variables in Si. An optimal solution is an assignment of val-
ues to all the variables from their respective domains so that
the sum of the costs—as specified locally by each weighted
constraint—is minimized. In a Boolean WCSP, the size of
any variable’s domain is equal to 2—i.e., |Di| = 2 for all
i ∈ {1, 2 . . . N}. Boolean WCSPs are representationally
as powerful as WCSPs; and it is well known that optimally
solving WCSPs or Boolean WCSPs is NP-hard in general.

The WCSP framework is representationally very power-
ful and can be used to model a multitude of real-world com-
binatorial tasks. In fact, a wide range of combinatorial prob-

∗T. K. Satish Kumar, alias Satish Kumar Thittamaranahalli, is a
Research Scientist at the University of Southern California.

lems studied across different research communities fall un-
der the broad umbrella of WCSPs. In probabilistic reason-
ing, for example, a Bayesian network can model the world
using random variables and conditional probability tables
associated with each of them (Russell and Norvig 2003).
Given observations on some of the variables, the common-
place task of finding the most probable assignment of values
to the remaining variables is equivalent to solving a WCSP
by treating the negative logarithms of the probabilities in the
conditional probability tables as costs.

In computer vision, tasks such as image smoothing can
be posed as WCSPs by associating a variable with each
pixel (Kolmogorov and Zabih 2002; Rother, Kolmogorov,
and Blake 2004; Boykov and Funka-Lea 2006). Unary
weighted constraints over individual variables represent the
cost of deviation from the observed pixel values. Binary
weighted constraints over variables corresponding to adja-
cent pixels represent smoothness requirements. In statisti-
cal physics, ground states of spin glasses can be computed
by solving WCSPs. In the Edwards-Anderson model (Ed-
wards and Anderson 1975), for example, a variable is as-
sociated with each particle in a d-dimensional lattice. Each
particle can have a positive or negative Ising spin. While
the sum of the unary spins represents the external magnetic
field, the interactions between neighboring particles can be
ferromagnetic or anti-ferromagnetic. Even classical combi-
natorial problems in graph theory and discrete mathematics
can be modeled using the WCSP framework (Kumar 2008a;
2008b). For example, among many other combinatorial
problems in graph theory, the tractable min-st-cut problem
as well as the NP-hard max-cut problem can both be mod-
eled using Boolean WCSPs with only binary constraints.

In this paper, we present an algorithmic framework for
kernelization of Boolean WCSPs. Our kernelization tech-
nique employs a polynomial-time maxflow-based algorithm
to fix the optimal values of a subset of the variables in a pre-
processing phase. It thereby reduces the set of variables for
which exhaustive search is eventually required to all but a
small kernel. As mentioned above, Boolean WCSPs are rep-
resentationally as powerful as WCSPs and are able to model
diverse combinatorial tasks studied across different research
communities. A kernelization technique for Boolean WC-
SPs therefore has direct and important implications on our
ability to kernelize these real-world problem instances. For a

Boolean WCSP with N variables, a kernelization procedure
that reduces the number of variables to N/2 in the kernel
has huge benefits since the size of the search space reduces
to
√
2N from the original 2N . Of course, kernelization can

work in conjunction with any efficient solver for the remain-
ing kernel of variables.

Despite its conceptual appeal, kernelization has not re-
ceived much attention in the AI community. In the con-
text of CSPs, arc-consistency (Lecoutre 2009)—and per-
haps other forms of local consistency like singleton arc-
consistency (Bessiere 2008)—can be viewed as kerneliza-
tion techniques. But even these are not very powerful prun-
ing techniques when generalized to WCSPs (Cooper and
Schiex 2004; Larrosa 2004; Zytnicki 2009). In the com-
plexity theory community, kernelization is studied for very
specific problems—like the minimum vertex cover prob-
lem (Abu-Khzam et al. 2004)—often in conjunction with
fixed-parameter tractability (Niedermeier 2006).

In this paper, we present a viable technique that uses
maxflow computations for kernelization of any combina-
torial problem posed as a Boolean WCSP. We study some
implications of this algorithmic framework and show that
it can also be used to generate intelligent lower and upper
bounds on the costs of optimal solutions to WCSPs. The up-
per bound is generated constructively along with a candidate
solution whose cost matches this bound. On further exami-
nation, we find that the same framework can also be used to
understand the scope of incremental computation for com-
binatorial problems posed as Boolean WCSPs.

High-Level Ideas
In this section, we briefly outline the main ideas in the
paper. Formal descriptions appear in later sections. The
first idea is to exploit the mathematical framework of the
constraint composite graph (CCG) introduced in (Kumar
2008a; 2008b). The CCG is a graphical representation of a
given WCSP that is built using a simple composition of the
individual lifted graphical representations for each weighted
constraint. By design, it captures the “numerical” structure
of the weighted constraints which the constraint network
otherwise ignores. In addition, the treewidth of the CCG is
no more than the treewidth of the constraint network (Ku-
mar 2008a). This makes the CCG a unifying framework
for simultaneously exploiting the numerical structure of the
weighted constraints as well as the graphical structure of the
variable-interactions. Classes of WCSPs that are tractable
by virtue of the structure in their weighted constraints often
map to tractable minimum weighted vertex cover (MWVC)
problems over bipartite CCGs. Classes of WCSPs that have
a low treewidth map to MWVC problems over CCGs that
also have the same low treewidth (Kumar 2008a). Further-
more, any WCSP has a tripartite CCG associated with it
and is equivalent to solving the MWVC problem over this
CCG (Kumar 2008a; 2008b).

The second idea is to make use of the kernelization prop-
erties of the MWVC problem. In particular, a systematic
study of kernelization techniques for the MWVC problem
based on crown reductions is presented in (Chlebik and

1X2

1 X1

1X3

1X5

3X4 2X7

1X6

4
5

7
6

X4

X1

0

1

0 1

Figure 1: The table on the right-hand side represents the projection of the MWVC
problem onto the IS {X1, X4} of the node-weighted undirected graph on the left-
hand side. (The weights on X4 and X7 are set to 3 and 2, respectively, while all
other nodes have unit weights.) The entry ‘7’ in the cell (X1 = 0, X4 = 1), for
example, indicates that when X1 is prohibited from being in the MWVC but X4 is
necessarily included in it, then the weight of the MWVC—{X2, X3, X4, X7} or
{X2, X3, X4, X5, X6}—is 7.

Chlebikova 2007). In concluding remarks of this paper, the
authors say “The technique developed in this paper may be
a powerful tool in kernelization for other optimization prob-
lems . . .”. The idea of the CCG confirms this conjecture. A
systematic way to construct the CCG for any given Boolean
WCSP is encapsulated as a simple polynomial-time proce-
dure and is presented in (Kumar 2008a). Since the Boolean
WCSP is equivalent to solving the MWVC problem on its
associated CCG, kernelization techniques for the MWVC
problem carry over to the original Boolean WCSP.

The third idea is to make use of the fact that the MWVC
problem is half-integral (Nemhauser and Trotter 1974).
This means that kernelization for the MWVC problem can
be done using a staged maxflow computation on a bipar-
tite graph (Chlebik and Chlebikova 2007). This yields a
polynomial-time maxflow-based kernelization procedure for
WCSPs using their CCGs. The overall procedure for solv-
ing a given WCSP would therefore be to: (a) construct its
CCG; (b) kernelize the MWVC problem on its CCG us-
ing a maxflow computation; and (c) solve the kernel using
search-based methods. While (a) and (b) are polynomial-
time phases, (c) is not. Furthermore, since (b) is based on
maxflow, it can be made incremental as described in (Ku-
mar 2003; Kumar and Gupta 2003). This gives us an under-
standing of the scope of incremental computation for WC-
SPs. Because WCSPs are NP-hard in general, they are not
easily amenable to incremental computation.1 Nonetheless,
the idea of a maxflow-based kernelization facilitates incre-
mental computation to a certain extent. In particular, (b) can
be made incremental and (c) poses a much smaller search
space than for the original WCSP without kernelization.

Background on CCGs
In an undirected graph G = 〈V,E〉, U = {u1, u2 . . . uk}
is said to be an independent set (IS) of G if and only if no
two nodes in U are connected by an edge in E. A vertex
cover (VC) is a set of nodes S ⊆ V such that every edge
has at least one end-point in S. A minimum VC is a VC of
minimum size. When non-negative weights are associated

1If they were, one could start with a trivial case, add the vari-
ables of a given WCSP one at a time, and build the optimal solution
incrementally and efficiently.

X1 X2

X3

0.2

0.8

X1

A4

0.8
0.2

X1

0

1

0.7

0.3

X2

A5

0.3
0.7

X2

0

1

0.9

0.1

X3

A6

0.1
0.9

X3

0

1

0.2X1 0.1X2

0.5 A1

X2

0

1

X1

0

0

0.5
0.6

0

1

1

1

0.7
0.3

0.4 X2 0.7X3

0.6A2

X3

0

1

X2

0

0

0.6
1.3

0

1

1

1

1.0
1.1

0.3X1 0.5X3

0.4 A3

X3

0

1

X1

0

0

0.4
0.9

0

1

1

1

0.7
0.8

Constraint Graph

Unary Constraints

Binary Constraints

X1 X2 X3

A1 A2 A3 A4 A5 A6

Constraint Composite Graph

0.7 1.2 2.1

0.10.30.80.40.60.5

Figure 2: Shows a WCSP over 3 Boolean variables. The constraint network is shown in the top-left cell, and the 6 binary and unary weighted constraints are shown along with their
lifted graphical representations in the 1st and 2nd rows. The CCG is shown in the bottom-right cell.

with nodes, the MWVC is defined to be a VC of minimum
total weight on its nodes.

The concept of the MWVC on a given undirected graph
G = 〈V,E〉 can be extended to the notion of projecting
MWVCs onto a given IS U ⊆ V . The input to such a
projection is the graph G as well as an identified IS U =
{u1, u2 . . . uk}. The output is a table of 2k numbers. Each
entry in this table corresponds to a k-bit vector. We say that
a k-bit vector t imposes the following restrictions: (a) if the
ith bit ti is 0, the node ui is necessarily excluded from the
MWVC; and (b) if the ith bit ti is 1, the node ui is necessar-
ily included in the MWVC. The projection of the MWVC
problem onto the IS U is then defined to be a table with en-
tries corresponding to each of the 2k possible k-bit vectors
t(1), t(2) . . . t(2

k). The value of the entry corresponding to
t(j) is equal to the weight of the MWVC conditioned on the
restrictions imposed by t(j). Figure 1 presents a simple ex-
ample to illustrate the notion of projecting MWVC problems
onto an IS in a node-weighted undirected graph.

The table of numbers produced above can be viewed as
a weighted constraint over |U | Boolean variables. Con-
versely, given a (Boolean) weighted constraint, we can think
about designing a “lifted” representation for it so as to be
able to view it as the projection of an MWVC problem
in some intelligently constructed node-weighted undirected
graph. This idea was first discussed in (Kumar 2008a;
2008b). The benefit of constructing these graphical repre-
sentations for individual constraints lies in the fact that the
lifted graphical representation for the entire WCSP can be
obtained by simply “merging” them. This merged graph is
referred to as the CCG associated with the WCSP.

Figure 2 shows an example WCSP over 3 Boolean vari-
ables to illustrate the construction of the CCG. Here, there
are 3 unary weighted constraints and 3 binary weighted con-
straints; and their lifted representations (as projections of
MWVC problems) are shown next to each of them. The fig-
ure also illustrates how the CCG is obtained from the indi-
vidual graphs representing each of the weighted constraints.

In the CCG, nodes that represent the same variable are sim-
ply “merged”—along with their edges—and every “compos-
ite” node is given a weight equal to the sum of the individual
weights on the merged nodes. Computing the MWVC for
the CCG yields an optimal solution for the WCSP; namely,
if Xi is in the MWVC, then it is assigned the value 1 in the
WCSP, else it is assigned the value 0 in the WCSP.

Any given weighted constraint on Boolean variables (that
is, a Boolean weighted constraint) can be represented graph-
ically using a tripartite graph that can be constructed in
polynomial time (Kumar 2008a). In many cases, the lifted
graphical representations turn out to be only bipartite. Since
the resulting CCG is also bipartite if each of the individual
graphical representations is bipartite, the tractability of the
language LBoolean

bipartite—the language of all Boolean weighted
constraints with a bipartite graphical representation—is
readily established. This is because solving MWVC prob-
lems on bipartite graphs is reducible to maxflow prob-
lems and can therefore be done efficiently in polynomial
time (Goldberg and Tarjan 1988).

Kernelization of Boolean WCSPs
Given a Boolean WCSP B, let C(B) = 〈VC(B), EC(B)〉
be its associated CCG. As mentioned before, C(B) can
be built using a simple polynomial-time algorithm pre-
sented in (Kumar 2008a). The algorithm first converts
each weighted constraint to a multi-variate polynomial and
then composes the gadgets built for each of the individual
terms in this polynomial. While linear and negative non-
linear terms have bipartite representations, positive nonlin-
ear terms have tripartite representations. In general, C(B)
is a tripartite graph over the original variables in B—i.e.,
X (B) = {X1, X2 . . . XN}—as well as some auxiliary vari-
ables A(B) = {A1, A2 . . . AN ′}. In other words, we have
VC(B) = X (B) ∪ A(B).

Finding the optimal solution for B is equivalent to solv-
ing the MWVC problem on C(B). Consider the Integer Lin-
ear Programming (ILP) formulation of this MWVC problem

Algorithm 1: KERNELIZE-BOOLEAN-WCSP
Shows the general maxflow-based kernelization procedure for Boolean WCSPs. The procedure: (a) constructs the CCG;
(b) kernelizes its MWVC; and (c) projects it back to the Boolean WCSP.

Input: a Boolean WCSP B with variables X (B) = {X1, X2 . . . XN}
Output: a subset of variables S ⊆ X (B) with their optimal Boolean assignments; X (B) \ S is the kernel

(1) Using the polynomial-time procedure presented in (Kumar 2008a), construct C(B) = 〈VC(B), EC(B)〉, the CCG of the
Boolean WCSP B.
(2) Build a bipartite graph D(B) = 〈V d

L , V
d
R , E

d〉 as follows:
(a) For each node v ∈ VC(B), create two corresponding nodes of the same weight in D(B): vdL ∈ V d

L and vdR ∈ V d
R .

(b) For each edge (u, v) ∈ EC(B), create two corresponding edges in D(B): (udL, vdR) ∈ Ed and (vdL, u
d
R) ∈ Ed.

(3) Using the polynomial-time maxflow-based algorithm of (Goldberg and Tarjan 1988), solve for V Cd, the MWVC of the
bipartite graph D(B).
(4) Define a half-integral vertex cover HI for C(B) as follows:

(a) For v ∈ VC(B), set Zv = 1 iff both copies vdL ∈ V d
L and vdR ∈ V d

R belong to V Cd.
(b) For v ∈ VC(B), set Zv = 0 iff neither copy vdL ∈ V d

L or vdR ∈ V d
R belongs to V Cd.

(c) For v ∈ VC(B), set Zv = 1
2 iff exactly one of the two copies vdL ∈ V d

L or vdR ∈ V d
R belongs to V Cd.

(5) For each i ∈ {0, 12 , 1}, construct V Ci = {v ∈ VC(B) : Zv = i}.
(6) For v ∈ VC(B) that corresponds to a variable X in X (B):

(a) If v ∈ V C0, add X to S and give it the Boolean assignment 0.
(b) If v ∈ V C1, add X to S and give it the Boolean assignment 1.

(7) Return the set S.

whereZi is a Boolean variable that represents whether or not
vi with weight wi is chosen in the MWVC.

Minimize
|VC(B)|∑
i=1

wiZi

∀ vi ∈ VC(B) : Zi ∈ {0, 1}
∀ (vi, vj) ∈ EC(B) : Zi + Zj ≥ 1

(1)

Now consider the Linear Programming (LP) relaxation
where Zi ∈ [0, 1] is used instead of Zi ∈ {0, 1}. It is
well known that in any optimal solution to the LP relaxation,
each Zi will be such that Zi ∈ {0, 12 , 1}. This special prop-
erty of the MWVC problem makes it a half-integral prob-
lem (Nemhauser and Trotter 1974). Furthermore, because
of the half-integral property, the LP itself can be solved as a
maxflow problem as described below.

We build a bipartite graph D(B) = 〈V d
L , V

d
R , E

d〉 as fol-
lows. For each v ∈ VC(B), we create two corresponding
nodes of the same weight in D(B): vdL ∈ V d

L and vdR ∈ V d
R .

For each edge (u, v) ∈ EC(B), we create two corresponding
edges in D(B): (udL, vdR) ∈ Ed and (vdL, u

d
R) ∈ Ed.

Since D(B) is a bipartite graph, the MWVC problem
on it can be solved using the polynomial-time algorithm
of (Goldberg and Tarjan 1988) that runs in time O(|V d

L ∪
V d
R ||Ed|log (|V d

L∪V d
R |2/|Ed|)). Consider the MWVC V Cd

for D(B). It defines a half-integral vertex cover for C(B) as
follows. For a vertex v ∈ VC(B), the corresponding vari-
able Zv is set to 1 if and only if both copies vdL ∈ V d

L and
vdR ∈ V d

R are in V Cd. Zv is set to 0 if and only if neither
copy is in V Cd. Zv is set to 1

2 if and only if exactly one of
the two copies is in V Cd.

Lemma 1 of (Chlebik and Chlebikova 2007) shows that
such a half-integral vertex cover is indeed optimal for C(B)
when it is derived from the MWVC of D(B). Further-
more, the Nemhauser-Trotter (NT) reduction (Nemhauser
and Trotter 1974)2 guarantees that if V Ci = {v ∈ VC(B) :

Zv = i} for each i ∈ {0, 12 , 1}, then there exists an
MWVC for C(B) that has all the vertices in V C1 and none
of the vertices in V C0. As described in (Chlebik and
Chlebikova 2007), this serves as a kernelization procedure
for the MWVC problem. Any Zv = 0 or 1 from the optimal
half-integral solution can be committed to for the optimal
integral solution as well. The kernel variables correspond to
all those nodes for which Zv = 1

2—i.e., the set V C 1
2

.
Algorithm 1 shows how to adapt this MWVC kerneliza-

tion procedure to general Boolean WCSPs. The adaptation
carefully heeds to the consequences of using auxiliary vari-
ables in the construction of the CCG for a given Boolean
WCSP. The following theorem proves its correctness.

Theorem 1. Algorithm 1 returns a set S such that X (B)\S
is a valid kernel.

Proof. From Lemma 4 of (Kumar 2008a), we know that the
MWVC of C(B) corresponds to an optimal solution of the
Boolean WCSP B. That is, if v is a node in VC(B) that cor-
responds to a variable X in X (B), then the optimal value of
X is equal to 1 when v is in the MWVC of C(B) and 0 oth-
erwise. From Lemma 1 of (Chlebik and Chlebikova 2007),
Steps 2-4 compute an optimal half-integral vertex cover for
C(B). Now, from the NT reduction (Nemhauser and Trotter
1974), we know that there exists an MWVC for C(B) that
has all the vertices in V C1 and none of the vertices in V C0

2also see page 3 of (Chlebik and Chlebikova 2007)

where V Ci for each i ∈ {0, 12 , 1} is as defined in Step 5.
Step 6 counts only a subset of the nodes in V C0 and V C1—
namely, V C0 ∩ X (B) and V C1 ∩ X (B). Put together with
the NT reduction, there now exists an MWVC for C(B) that
has all the vertices in V C1 ∩ X (B) and none of the vertices
in V C0 ∩ X (B). But once again, since the MWVC of C(B)
corresponds to an optimal solution of B, this is equivalent to
saying that there exists an optimal solution of B that extends
the commitments made for set S in Step 6. This proves that
X (B) \ S is a valid kernel.

One of the hallmarks of a good kernelization procedure
is to be able to recognize tractable classes of Boolean WC-
SPs. This is much like the hallmark of a good SAT solver
that not only works on general SAT instances but also solves
the special case of 2-SAT instances in polynomial time. In
the following theorem, we prove that the kernelization pro-
cedure of Algorithm 1 exhibits this desirable property.

Theorem 2. Algorithm 1 produces an empty kernel for the
tractable language of weighted constraints LBoolean

bipartite.

Proof. We first assume that there is a unique MWVC for
C(B).3 From Theorem 6 of (Kumar 2008a), we know that
the language LBoolean

bipartite—that contains Boolean weighted
constraints with lifted bipartite graphical representations—
produces a bipartite CCG C(B). From Step 2, it is easy to see
that for a bipartite C(B), the bipartite graph D(B) has two
disconnected complementary copies of C(B). V Cd in Step 3
therefore has two complementary copies of the same unique
MWVC for C(B). In other words, for any node v ∈ VC(B),
vdL ∈ V Cd if and only if vdR ∈ V Cd. In turn, this means
that V C 1

2
is empty making the kernel empty as well.

The above proof assumes the existence of a unique
MWVC for C(B). Although this may not be true in general,
it is easy to “simulate” it by perturbing the weights by tiny
random amounts. A formal proof for this uses the Isolation
Lemma (Valiant and Vazirani 1986; Mulmuley, Vazirani, and
Vazirani 1987) but is skipped here for the sake of simplicity.

Generation of Lower and Upper Bounds
In this section, we show how the polynomial-time kerneliza-
tion procedure of Algorithm 1 can also be used to produce
intelligent lower and upper bounds for optimal solutions to
combinatorial problems posed as Boolean WCSPs. The idea
is to leverage the polynomial-time factor-2 approximability
of the MWVC problem. For example, Clarkson’s primal-
dual algorithm provides a factor-2 polynomial-time approx-
imation for the MWVC problem (Vazirani 2001).4

We note that a factor-2 approximation for the MWVC can
also be derived from the kernelization procedure of Algo-
rithm 1. In particular, consider the optimal half-integral ver-
tex cover generated for C(B) in Step 4. An integral vertex
cover AC of at most twice the cost can be generated from

3Of course, this may not be true in general, but it is easy to
obviate this assumption. See the running text just after the proof.

4A better approximation for the MWVC problem is unlikely
since it is Unique Games-hard (Khot and Regev 2008).

this by simply rounding up Zv = 1
2 to Zv = 1. That is,

AC = V C 1
2
∪ V C1, where V C 1

2
and V C1 are as generated

in Step 5. The cost ofAC is at most twice the cost of the op-
timal half-integral vertex cover and therefore at most twice
the cost of the MWVC.

We also note that while the MWVC of the CCG C(B)
encodes an optimal solution to the Boolean WCSP B, and
although AC is a factor-2 approximation to this MWVC,
the solution encoded by AC is not necessarily a factor-2 ap-
proximation to the original Boolean WCSP. This is because
the machinery of the transformation—as explained in (Ku-
mar 2008a)—introduces an offset κ(B) such that the cost of
the MWVC in C(B) is equal to the cost of the optimal solu-
tion in B plus κ(B). The offset κ(B) is computable in the
transformation and depends on the particular instance B.

Of course, κ(B) cannot be 0 in all cases since that would
contradict the inapproximability results of combinatorial
problems—like the maximum independent set problem—
that can be modeled as Boolean WCSPs. Nonetheless, use-
ful bounds can be generated for the cost of the optimal solu-
tion inB using the vertex coverAC. Clearly, an upper bound
is cost(AC)−κ(B); and a lower bound is cost(AC)

2 −κ(B).
In general, what we have, therefore, is a procedure that gen-
erates maxflow-based lower and upper bounds for the cost
of the optimal solution to a combinatorial problem posed as
a Boolean WCSP. Although this task is riddled with nega-
tive results in complexity theory, our procedure for generat-
ing bounds is useful as an instance-specific method that ex-
ploits the numerical structure of the given Boolean WCSP.
Of course, the generation of the upper bound is constructive
since AC encodes the corresponding approximate solution.

The Scope of Incremental Computation
In this section, we discuss the idea of incremental compu-
tation for solving Boolean WCSPs. Given two instances B1
and B2, the idea is to solve B2 optimally having solved B1
optimally. Of course, this raises the first question of how to
characterize the “closeness” of B1 and B2 and then the sec-
ond question of how to exploit it towards solving B2 more
efficiently instead of solving it from scratch.

Several interesting procedures have been suggested for
solving maxflow problems incrementally (Kumar 2003; Ku-
mar and Gupta 2003). Intuitively, the idea is to exploit the
fact that maxflow algorithms typically operate on a residual
graph that enables easy backtracking. The residual graph
that emerges as a byproduct of solving the first instance can
be used as a starting point for the second instance (Kumar
2003). The “closeness” of the two instances can be captured
in terms of how much flow remains to be pushed for the sec-
ond instance starting from the residual graph of the first.

For tractable classes of Boolean WCSPs that have bipar-
tite CCGs, the existing theory of incremental maxflow com-
putation is very useful. This is because: (a) the MWVC
computation in the CCGs corresponds to finding the optimal
solution for the Boolean WCSPs; and (b) MWVC computa-
tion for bipartite graphs can be done using maxflow proce-
dures (Goldberg and Tarjan 1988). Put together, it is easy to
design incremental maxflow-based algorithms for Boolean

WCSPs with bipartite CCGs. This establishes a framework
where CCGs can not only be used to identify and solve
tractable classes of Boolean WCSPs in polynomial time but
can also be used to recompute their optimal solutions effi-
ciently for incremental changes.

For general Boolean WCSPs, incremental computation is
not readily applicable. This is because they are NP-hard,
and if they were easily amenable to incremental computa-
tion, one could start with a trivial case, add the variables of
a given WCSP one at a time, and build the optimal solu-
tion incrementally and efficiently. Nonetheless, the idea of
a maxflow-based kernelization facilitates incremental com-
putation to a certain extent. In particular, the kernelization
itself can be made incremental since it is based on maxflow.

The overall procedure for solving a given Boolean WCSP
is to: (a) construct its CCG; (b) kernelize the MWVC prob-
lem on its CCG using a maxflow computation; and (c) solve
the kernel using search-based methods. While (a) and (b)
are polynomial-time phases, (c) is not. But since (b) is based
on maxflow, it can be made incremental as described above.
This gives us an understanding of the scope of incremental
computation in WCSPs for pruning large parts of the search
space during kernelization. Furthermore, (c) poses a much
smaller search space than for the original Boolean WCSP
without kernelization.

Conclusions and Future Work
In this paper, we presented an algorithmic framework for
kernelization of combinatorial problems posed as Boolean
WCSPs. Our kernelization technique is a polynomial-time
maxflow-based algorithm that fixes the optimal values of a
subset of the variables in a preprocessing phase. It thereby
reduces the original set of variables for which exhaustive
search is required to all but a small kernel of variables.
We showed that for the language of all Boolean weighted
constraints that have lifted bipartite graphical representa-
tions, not only is the CCG bipartite—thereby establishing
tractability of this language—but the kernelization proce-
dure also yields an empty kernel.

For general Boolean WCSPs, we showed that the kernel-
ization procedure not only fixes the optimal values of a sub-
set of the variables but also produces intelligent lower and
upper bounds for the cost of the optimal solution. The up-
per bound is generated constructively along with a candidate
solution whose cost matches this bound.

We also used our algorithmic framework to understand
the scope of incremental computation for Boolean WCSPs.
While the kernelization procedure itself can be made incre-
mental since it is akin to well-studied incremental maxflow
algorithms, solution procedures for the kernel are unlikely to
be made incremental with significant benefits. Once again,
for the special case of weighted constraints with lifted bi-
partite graphical representations, the entire algorithm can be
made incremental because the kernel is provably empty.

Future work is mostly directed towards implementation of
algorithms that are based on the theory in this paper. Gen-
eralization of this theory from Boolean WCSPs to WCSPs
is relatively straightforward. Parts of this generalization al-
ready appear in (Kumar 2008b).

References
Abu-Khzam, F.; Collins, R.; Fellows, M.; Langston, M.;
Suters, W.; and Symons, C. 2004. Kernelization Algorithms
for the Vertex Cover Problem: Theory and Experiments. In
Technical Report, University of Tennessee.
Bessiere, C. 2008. Theoretical Analysis of Singleton Arc
Consistency. In Artificial Intelligence Journal.
Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex,
T.; and Verfaillie, G. 1996. Semiring-Based CSPs and Val-
ued CSPs: Basic Properties and Comparison. In Proceed-
ings of Over-Constrained Systems.
Boykov, V., and Funka-Lea, G. 2006. Graph Cuts and Effi-
cient N-D Image Segmentation. In International Journal of
Computer Vision.
Chlebik, M., and Chlebikova, J. 2007. Crown Reductions
for the Minimum Weighted Vertex Cover Problem. In Dis-
crete Applied Mathematics.
Cooper, M., and Schiex, T. 2004. Arc Consistency for Soft
Constraints. In Artificial Intelligence Journal.
Edwards, S., and Anderson, P. 1975. Theory of Spin
Glasses. In Journal of Physics F: Metal Physics.
Goldberg, A., and Tarjan, R. 1988. A New Approach to the
Maximum-Flow Problem. In Journal of the ACM.
Khot, S., and Regev, O. 2008. Vertex Cover Might be Hard
to Approximate within 2 - ε. In Journal of Computer and
System Sciences.
Kolmogorov, V., and Zabih, R. 2002. Multi-Camera Scene
Reconstruction via Graph Cuts. In Proceedings of the Euro-
pean Conference on Computer Vision.
Kumar, S., and Gupta, P. 2003. An Incremental Algorithm
for the Maximum Flow Problem. In Journal of Mathemati-
cal Modelling and Algorithms.
Kumar, T. K. S. 2003. Incremental Computation of
Resource-Envelopes in Producer-Consumer Models. In Pro-
ceedings of the Ninth International Conference on Princi-
ples and Practice of Constraint Programming.
Kumar, T. K. S. 2008a. A Framework for Hybrid Tractabil-
ity Results in Boolean Weighted Constraint Satisfaction
Problems. In Proceedings of the Fourteenth International
Conference on Principles and Practice of Constraint Pro-
gramming.
Kumar, T. K. S. 2008b. Lifting Techniques for Weighted
Constraint Satisfaction Problems. In Proceedings of the
Tenth International Symposium on Artificial Intelligence and
Mathematics.
Larrosa, J. 2004. Solving Weighted CSP by Maintaining
Arc Consistency. In Artificial Intelligence Journal.
Lecoutre, C. 2009. Constraint Networks: Techniques and
Algorithms. In ISTE/Wiley Publishers.
Mulmuley, K.; Vazirani, U.; and Vazirani, V. 1987. Match-
ing is as Easy as Matrix Inversion. In Combinatorica 7 (1):
105–113.
Nemhauser, G., and Trotter, L. 1974. Properties of Vertex
Packing and Independence System Polyhedra. In Mathemat-
ical Programming.

Niedermeier, R. 2006. Invitation to Fixed-Parameter Algo-
rithms. In Oxford University Press.
Rother, C.; Kolmogorov, V.; and Blake, A. 2004. Grab-
cut: Interactive Foreground Extraction Using Iterated Graph
Cuts. In ACM Transactions on Graphics.
Russell, S., and Norvig, P. 2003. Artificial Intelligence:
A Modern Approach. In Upper Saddle River, New Jersey:
Prentice Hall.
Valiant, L., and Vazirani, V. 1986. NP is as Easy as Detect-
ing Unique Solutions. In Theoretical Computer Science.
Vazirani, V. 2001. Approximation Algorithms. In Springer-
Verlag Publishers.
Zytnicki, M. 2009. Bounds Arc Consistency for Weighted
CSPs. In Journal of Artificial Intelligence Research.

