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Abstract

In this paper, we study Quantified Integer Program-
ming (QIP) and Quantified Integer Implication (QII)
from the perspective of computational complexity. In
particular, we show that the restricted language of QIIs
is expressive enough to fully capture Presburger Arith-
metic. Secondly, we establish the computational com-
plexity of QIP over polytopes, i.e., cases where an up-
per and lower bound can always be derived for existen-
tial variables. Thirdly, we investigate the complexities
of partially bounded and unbounded variants of QIPs
and QIIs. Finally, we examine the connections between
QIPs and QIIs with limited quantifier alternations and
the polynomial hierarchy.

1 Introduction
This paper establishes the computational complexities of a
number of mathematical programming models for uncer-
tainty handling. In particular, it examines Quantified Inte-
ger Programming (QIP) and Quantified Integer Implication
(QII). The abbreviations QIP and QII are used interchange-
ably to denote the class of problems or a specific instance,
depending on the context. Both QIP and QII are versatile
tools arising in a number of application domains including,
but not limited to, real-time scheduling (Gerber et al., 1995)
and program verification (Bradley and Manna, 2007). These
paradigms generalize Integer Programming (IP) and Integer
Implication in precisely the same manner as quantified sat-
isfiability and quantified implication extend boolean satisfi-
ability and boolean implication respectively.

The decision problem of QIPs and QIIs (and their vari-
ants) can be viewed as a 2-person combinatorial, partizan
game (Ferguson, 2013). In such a game there are two play-
ers, viz., the existential player X, who chooses values for the
existentially quantified integer variables, and the universal
player Y, who chooses values for the universally quantified
integer variables. X and Y make their choices according to
the order of the variables in a quantifier string. Each choice
corresponds to a move and each player has a predetermined
number of moves. If, at the end of all the moves, the instan-
tiated linear system in the QIP or the implication in the QII

∗This research was supported in part by the National Science
Foundation through Award CCF-1305054.

is true, then X wins the game (we say that X has a winning
strategy). Otherwise, Y wins the game.

Moreover, this paper introduces the partially bounded and
unbounded versions of QIP and QII. In the former, univer-
sally quantified variables are bounded below but not above.
In the latter, universally quantified variables are not bounded
at all. It is worth noting that the current work in QIPs and
QIIs generalizes our previous work in Quantified Linear Pro-
gramming (QLP) and Quantified Linear Implication (QLI)
(Subramani, 2007; Eirinakis et al., 2014; Wojciechowski et
al., 2015).

We show that several of these problems are complex
enough to capture the entirety of Presburger Arithmetic (PA)
(see Appendix A). A problem which can express Presburger
Arithmetic is referred to as PA-hard. If, in addition, the
problem is itself expressible in PA, then the problem is said
to be PA-complete.

The principal contributions of this paper are as follows:

1. Establishing that QIPs over polytopes are PSPACE-
complete.

2. Establishing that QII is PA-complete.

3. Establishing that the partially bounded and the unbounded
variants of QIP and QII are all PA-complete.

4. Examining the relation of variants of QIP and QII with
the PH.

The rest of the paper is organized as follows. The motiva-
tion for our work and related approaches in the literature are
discussed in Section 2. In Section 3, we establish the com-
putational complexity of QIP over polytopes. Section 4 and
Section 5 are concerned with the computational complexi-
ties of the unbounded and partially bounded variants of QIP
and QII respectively. Section 4 also includes a proof that QII
is PA-complete. The relationship between QIP and the poly-
nomial hierarchy (PH) is discussed in Section 6, while the
relationship between QII and the PH is detailed in Section 7.
We conclude in Section 8 by summarizing our contributions
and identifying avenues for future research.

2 Motivation and Related Work
Modeling uncertainty is one of the principal application ar-
eas of QIP and QII. Many application models incorporate
the assumption of constancy in data which is neither realistic



nor accurate. In scheduling problems, for instance, the exe-
cution time of a job is usually considered fixed and known
in advance. This simplifying assumption leads to simple
tractable models. However, in real-time systems, such an as-
sumption may lead to dire consequences (Stankovic et al.,
1998).

In contrast, QIP and QII are ideal for expressing schedu-
lability specifications. In real-time scheduling, a dispatcher
wants to schedule a set of ordered, non-preemptive jobs
within given time frames. The start time and the execution
time of each job may vary among integer values. Hence, QIP
can be utilized to model the start times as existentially quan-
tified variables and the execution times as universally quan-
tified variables, while linear constraints can be used to ex-
press the constraints between the various jobs and their start
and end times (e.g., see (Subramani, 2003)). Thus, the ex-
istence of a feasible schedule is equivalent to deciding the
corresponding QIP.

Consider the situation where a schedule has already been
determined, but some constraints get modified. At this junc-
ture, we can either compute a new schedule or check if the
new constraint set is a relaxation of the initial constraint set.
The latter approach is easily modeled as a QII with the initial
constraint set acting as the antecedent and the new constraint
set acting as the consequent of the implication.

Other approaches to scheduling are based on parametric
flows (Serafini, 1996; McCormick, 2000) and selective as-
sembly (Iwata et al., 1998). Such flow problems are natu-
rally expressed as QIPs whose constraint matrix is totally
unimodular.

In his seminal thesis, Tarski (1948) proved via quan-
tifier elimination that the full elementary theory of real
closed fields with addition, multiplication, and order is de-
cidable. Since then, several other decision procedures have
been proposed (e.g., see (Weispfenning, 1988; Collins and
Hong, 1991; Dolzmann and Sturm, 1997; Dolzmann et al.,
1998; Brown, 2003; Ratschan, 2006)). Moreover, several
sub-classes of this theory have been studied. A quantifier
elimination procedure for sentences in the theory of reals
with addition and order exists, which is singly exponential
in space and doubly exponential in time (Ferrante and Rack-
off, 1975).

With respect to integer arithmetic, Peano arithmetic,
i.e., the first-order theory of the natural numbers with addi-
tion, multiplication, and order, is not decidable. On the other
hand, Presburger Arithmetic, which does not include mul-
tiplication, is decidable (Papadimitriou, 1994). In fact, the
problem of deciding PA is super-exponential (Fischer and
Rabin, 1974). PA is also studied in (Berman, 1980) (together
with the theory of reals with addition and order), where an
exponential time lower bound is provided and the time and
space complexities of both theories at various levels of quan-
tifier alternations are determined. QIP can be considered as
a restriction to PA, permitting only conjunctions of linear
inequalities. More elaborate relationships between linear in-
equalities can be expressed via QII.

The expressiveness of full first-order constraints is ana-
lyzed in (Colmerauer, 2003), where equality is considered
as a unique relational symbol. Universally quantified inter-

val constraints are examined in (Benhamou and Goulard,
2000) where their relationship with the computation of
inner-approximations of real relations is established. The
Fourier-Motzkin elimination technique for linear constraints
over both rational domains and lattice domains is empiri-
cally studied in (Lassez and Maher, 1992). Polyhedral pro-
jection is further examined in (Lassez and Lassez, 1993)
where the construction of the approximate convex hull of
the feasible space permits an efficient decision procedure for
certain clausal queries.

The Quantified Linear Programing paradigm was intro-
duced in (Subramani, 2007). It has been shown that QLP is
in PSPACE, although the hardness of this problem has not
yet been established. Quantified Linear Implication with an
arbitrary number of quantifier alternation has been shown to
be PSPACE-hard (Eirinakis et al., 2014). It is not known
whether this problem is in PSPACE. The computational
complexities of several sub-classes of QLI for a given num-
ber of quantifier alternations have also been established.
More specifically, QLIs are studied in (Eirinakis et al., 2012)
in the context of entailment of parameterized linear con-
straints. In (Eirinakis et al., 2014), several QLI classes with
0, 1, or 2 quantifier alternations are analyzed and their com-
plexity is established; polynomial-time procedures can be
devised for all sub-classes in P. Unbounded QLPs are stud-
ied in (Ruggieri et al., 2014), where it is shown that the cor-
responding decision problem is in P. The implication of this
result is that the presence of universal quantifiers does not
alter the complexity of the linear programming problem. In
(Wojciechowski et al., 2015), the same result was also ob-
tained for all partially bounded and unbounded variants of
QLP and QLI. Furthermore, it was shown that for each class
of the PH, there exists a QLI that is complete for that class,
a result analogous to that of (Stockmeyer, 1977) but with
continuous variables.

Results in QIP are rather scarce, while QII has not
been examined before. The decision problem for QIP is
PSPACE-hard. The hardness follows trivially from the fact
that Quantified Satisfiability (QSAT) is PSPACE-complete.
Various special cases of QIPs have also been analyzed in or-
der to identify subclasses that are tractable. Such subclasses
include QIPs in which all constraints exist between at most
two variables (referred to as Planar QIPs) (Liang et al., 2013)
or QIPs in which all variables are universally quantified (re-
ferred to as Box QIPs) (Subramani, 2005).

3 QIP Over Polytopes
We use the standard notation of linear algebra (Schrijver,
1987) to formally present the basic notions of this paper. R
is the set of real numbers. Let capital bold letters (A,B, . . .)
denote matrices and small bold letters (x,y,b, . . .) denote
column vectors. Moreover, let 0 be the column vector with
all elements equal to 0. Furthermore, let A · x denote the
product of A and x and let x · y denote the inner product of
x and y. Finally, we assume that the dimensions of vectors
and matrices in products are of compatible size.

In traditional IP, all variables are (implicitly) existentially
quantified. A Quantified Integer Program (Subramani, 2005)



is a conjunctive system of linear constraints with all vari-
ables restricted to integer values, in which each variable is
either existentially or universally quantified according to a
given quantifier string and each universally quantified vari-
able ranges over an interval of integers:

∃x1∀y1 ∈ {l1 − u1} . . . ∃xn∀yn ∈ {ln − un}
A · x + M · y ≤ b. (1)

In QIP (1), x1 . . .xn is a partition of x with, possibly, x1

empty; y1 . . .yn is a partition of y with, possibly, yn empty;
and li, ui are lower and upper bounds for yi, i = 1, . . . , n.
Note that in a QIP each universally quantified variable is
bounded from above and below. We say that a QIP holds if
it is true as a first-order formula over the domain of the in-
tegers. The decision problem for a QII consists of checking
whether it holds or not.

As stated before, it is trivial to reduce QSAT to QIP.
Hence, QIP is PSPACE-hard. We now study the case where
the linear system of the QIP is a polytope. This means that
for each existential variable we can always derive both an
upper and lower bound.

Theorem 3.1 QIP over polytopes is PSPACE-complete.

Proof: We only need to show that QIP over polytopes is in
PSPACE. Consider the following form of a QIP:

∃x1 ∀y1 ∈ {l1 − u1} . . . ∃xn ∀yn ∈ {ln − un}
A · x + M · y ≤ b

Note that QIP (1) can be easily converted into this form
through the addition of dummy variables.

In this QIP, y can take
∏n

i=1(ui − li + 1) possible val-
ues. For each value yj, we can consider the constraint matrix
A · x ≤ b−M · yj.

Let Aj · x ≤ bj be the constraint matrix representing the
integer hull of A · x ≤ b−M · yj. For each yj, we can find

lj = minx1

Aj · x ≤ bj.

We know that a finite lj exists and that it takes its value
at an extreme point of Aj · x ≤ bj. Thus, lj ∈ Z. Since
Aj · x ≤ bj is the integer hull of A · x ≤ b−M · yj we
also have that

lj = minx1

A · x ≤ b−M · yj

x ∈ Zn.

Thus,
∣∣lj − l′j∣∣ ≤ n · Ξ(A) where

l′j = minx1

A · x ≤ b−M · yj

and Ξ(A) is the maximum sub-determinant of A (Cook et
al., 1986).

We have that l′j ≤ lj . Thus, lj ≤ l′j + Ξ(A).
Since l′j corresponds to the value of x1 at an extreme

point of A · x ≤ b−M · yj we know that size(l′j) ≤

4 · (size(A) + size(b−M · yj)). Thus, l′j and lj are both
polynomially sized in terms of A, b, and M (Cook et al.,
1986).

For each yj we can also find

uj = maxx1

Aj · x ≤ bj.

Using similar arguments, we can show that uj always ex-
ists and is polynomially sized in terms of A, b, and M.

Let l = maxj=1,...,2n lj and u = minj=1,...,2n uj . We
have that both l and u are polynomially sized in terms of A,
b, and M. Hence, we have the following cases to consider

1. If l > u, then the QIP is infeasible.
2. If l ≤ u, then we only need to consider l ≤ x1 ≤ u. All

such values are polynomially sized.
Thus, we can always restrict x1 to be polynomially sized.

Since l1 ≤ y1 ≤ u1, we have that all possible values of y1
are also polynomially sized. Thus, after both x1 and y1 are
chosen, we get a new QIP with x2 as the first variable. Using
the same arguments we can show that all possible values for
x2 and y2 are also polynomially sized. Using induction, we
can repeat this process for each xi and yi. Thus, QIP over
polytopes is in PSPACE. 2

4 Unbounded variants
We now show that the unbounded variants of both problems
capture PA. This will allow us to show that QII is also PA-
complete.

4.1 Complexity of UQIP
An Unbounded Quantified Integer Program (UQIP) is a QIP
that has no bounds on universal variables:

∃x1∀y1 . . . ∃xn∀yn A · x + M · y ≤ b, (2)

Theorem 4.1 UQIP is PA-complete.
Proof: We show that by allowing for unbounded quantifiers
UQIP captures PA. Recall that PA does not allow for multi-
plication. However, all multiplications in UQIPs are done by
known integer constants. Thus, the multiplication in UQIP is
simply shorthand for repeated addition. For example, 5 · xi
can be considered shorthand for (xi + xi + xi + xi + xi).

Let us first show that every atomic formula (no quantifiers
or boolean operations) is simply an equality constraint. Let
P (x) ≤ a be an atomic formula in PA. Note that PA does
not explicitly allow inequality. However P (x) ≤ a can be
expressed in the language of PA as:

∃w P (x) + w = a.

This correctly expresses the desired inequality since all vari-
ables in PA are non-negative.

Hence, every atomic formula can be represented as an
equality constraint in the UQIP framework. Thus, to prove
our claim, we only need to show that quantification and
boolean operations can be expressed by the UQIP frame-
work.

Let us first examine quantification. Consider the expres-
sion ∀y Q(y) ≤ b. This can be rewritten as ∀y ∃w Q(y) +



w = b. Note that w is added at the end of the quantifier
string. This is because we do not want y to depend on the
choice for w. The original constraint holds as long as there
always exists an appropriate value of w. It is not a require-
ment that w has the same value in all cases. In fact, the value
of w can be different in every case and the original con-
straint will still hold. Hence, UQIPs already allow for uni-
versal quantifiers. The same holds for existentially quanti-
fied expressions in PA. It is easy to see that ∃x P (x) ≤ a
can be transformed to ∃x ∃w P (x) + w = a. Thus, any
quantified expression in PA is already valid in the language
of UQIPs.

Let us now examine boolean operations in PA.

1. (P (x) ≤ a) ∧ (Q(y) ≤ b): UQIPs already allow for the
conjunction of constraints. Thus, this is already valid in
the language of UQIPs.

2. ¬(P (x) ≤ a): Recall that P (x) is guaranteed to be inte-
gral. Thus, this is equivalent to:

a+ 1 ≤ P (x)

which is valid in the language of UQIPs.

3. (P (x) ≤ a) ∨ (Q(y) ≤ b): UQIPs do not explicitly al-
low disjunction. However we can handle this by adding
a new integer variable, w, and an associated large coeffi-
cient, M . We can then represent this disjunction as:

∃w (0 ≤ w ≤ 1) ∧ (P (x)−M · w ≤ a) ∧
(Q(y)−M · (1− w) ≤ b)

In this expression, w is used to choose which statement
in the disjunction is forced to hold and which is relaxed.
Thus, this is valid in the language of UQIPs. Again, in the
presence of quantification, w is added at the end of the
quantifier string. That is,

∃x ∀y (P (x) ≤ a) ∨ (Q(y) ≤ b)

becomes

∃x ∀y ∃w (0 ≤ w ≤ 1) ∧ (P (x)−M · w ≤ a) ∧
(Q(y)−M · (1− w) ≤ b).

Note that for the disjunction to be satisfied only one of
the original constraints needs to be satisfied. However,
which constraint is satisfied depends on the choices of x
and y. Thus, it is necessary for w to be chosen after y. If
y were chosen to violate both of the original constraints,
then both choices for w would result in a violated con-
straint, thus correctly simulating the disjunction.

Hence, through the use of these transformations and De
Morgan’s Laws we can transform any statement in PA into
a UQIP. Therefore, UQIP is PA-hard. To finalize the proof,
notice that UQIP is a special case of PA. Thus UQIP is PA-
complete. 2

Note that UQIP is PA-complete while QIP is PSPACE-
complete. This difference lies in the fact that in QIPs all uni-
versally quantified variables are guaranteed to be bounded.

4.2 Complexity of UQII and QII
A Quantified Integer Implication extends the quantification
of integer variables to implications of two linear constraint
systems:

∃x1∀y1 . . . ∃xn∀yn

[C · x + N · y ≤ b→ A · x + M · y ≤ d] (3)
where x1 . . .xn is a partition of x with, possibly, x1 empty
and y1 . . .yn is a partition of y with, possibly, yn empty.
We say that a QII holds if it is true as a first-order formula
over the domain of the integers. The decision problem for a
QII consists of checking whether it holds or not.

An Unbounded Quantified Integer Implication (UQII) is a
QII that includes only existential variables in its LHS (hence
not ‘bounding’ the universal variables):

∃x1∀y1 . . . ∃xn∀yn

[C · x ≤ d→ A · x + M · y ≤ b] (4)
The following theorem establishes the computational

complexity of UQII.
Theorem 4.2 UQII is PA-complete.
Proof: We reduce a UQIP instance of the form (2), which is
PA-complete (Theorem 4.1), to a UQII instance of the form
(4). We construct the UQII as follows:

1. For every vector xi of UQIP (2), we add a vector xi to the
corresponding UQII.

2. For every vector yi of UQIP (2), we add a vector yi to the
corresponding UQII.

3. All the constraints in A · x + M · y ≤ b are added to the
RHS of the implication.

4. To represent the unbounded universal variables, we add
the constraint 0 ≤ 1 to the LHS of the implication.

Furthermore, we use the same quantifier string as UQIP (2).
Hence, the constructed system will be as follows:
∃x1 ∀y1 . . . ∃xn ∀yn [0 ≤ 1→ A · x + M · y ≤ b]

This system is clearly of the form (4). Since the LHS of the
implication is always true, the implication is satisfied if and
only if A · x + M · y ≤ b. Thus, the constructed UQII is
feasible if and only if

∃x1 ∀y1 . . . ∃xn ∀yn A · x + M · y ≤ b.

is feasible. Thus UQII is PA-hard. Moreover, just like
UQIP, UQII is a special case of PA. Thus UQII is PA-
complete. 2

We can now easily extend this result to establish the com-
putational complexity of QII.
Corollary 4.1 QII is PA-complete.

Proof: By definition, a UQII is a QII. Thus, QII is PA-
hard. Moreover, just like UQIP, QII is a special case of PA.
Thus QII is PA-complete. 2

5 Partially bounded variants
In this section, we focus on problems where the universally
quantified variables are only restricted from one side. With-
out loss of generality, we can assume that these variables are
only bounded from below.



5.1 Complexity of PQIP
A Partially bounded Quantified Integer Program (PQIP) is
a QIP in which each universally quantified variable is only
bounded on one side. Without loss of generality, we can as-
sume this single bound forces each such variable to be non-
negative.

∃x1∀y1 ∈ {0−∞} . . . ∃xn∀yn ∈ {0−∞}
A · x + M · y ≤ b (5)

This assumption holds because we can always transform the
PQIP into the desired form as demonstrated in the example
that follows.

Example (1): Consider PQIP (6):

∃x1 ∀y1 ∈ (−∞,−5] x1 + y1 ≤ 2. (6)

We can change the upper bound on y1 into a non-negativity
lower bound by replacing all instances of y1 in PQIP (6) with
−(y1 + 5). This results in PQIP (7):

∃x1 ∀y1 ∈ [0,+∞) x1 − (y1 + 5) ≤ 2. (7)

Theorem 5.1 PQIP is PA-complete.
Proof: We reduce a UQIP instance of the form (2) to a PQIP
instance of the form (5). We construct the PQIP as follows:

1. For every vector xi of UQIP (2), we add a vector xi to the
corresponding PQIP.

2. For every vector yi of UQIP (2), we add vectors y′i ∈
{0−∞} and y′′i ∈ {0−∞} to the corresponding PQIP.

3. Let A · x + M · (y′ − y′′) ≤ b denote the constraints of
the PQIP.

Furthermore, we construct the quantifier string similarly to
that of the UQIP, replacing each yi of UQIP (2) with its cor-
responding vectors y′i and y′′i . Hence, the constructed sys-
tem will be as follows:

∃x1 ∀y′1 ∈ {0−∞} ∀y′′1 ∈ {0−∞} . . . ∃xn

∀y′n ∈ {0−∞} ∀y′′n ∈ {0−∞}
A · x + M · (y′ − y′′) ≤ b

This system is clearly of the form (5). Also, this system is
feasible if and only if

∃x1 ∀y1 . . . ∃xn ∀yn A · x + M · y ≤ b.

is feasible. Thus, PQIPs are PA-hard. Moreover, just like
UQIP, PQIP is a special case of PA. Hence, PQIPs are PA-
complete. 2

5.2 Complexity of PQII
A Partially bounded Quantified Integer Implication (PQII)
is a QII whose universally quantified variables are bounded
on one side. As with PQIPs, without loss of generality, we
can assume this single bound forces each such variable to be
non-negative. Note that these constraints are not included in
the quantifier string (as in the QIP or UQIP case) but in the
Left-Hand Side (LHS) of the corresponding constraints.

∃x1∀y1 . . . ∃xn∀yn

[C · x ≤ d,y ≥ 0→ A · x + M · y ≤ b] (8)

Theorem 5.2 PQII is PA-complete.

Proof: We reduce a PQIP instance of the form (5), which is
PA-complete (Theorem 5.1), to a PQII instance of the form
(8). We construct the PQII as follows:
1. For every vector xi of PQIP (5), we add a vector xi to the

corresponding PQII.
2. For every vector yi of PQIP (5), we add a vector yi to the

corresponding PQII.
3. All the constraints in A · x + M · y ≤ b are added to the

RHS of the implication.
4. To represent the bounds on the universally quantified vari-

ables, we add the constraints y ≥ 0 to the LHS of the im-
plication.

Furthermore, we utilize the same quantifier string as the
PQIP to obtain the following system:

∃x1 ∀y1 . . . ∃xn ∀yn [y ≥ 0→ A · x + M · y ≤ b]

This system is clearly of the form (8). Let yji be the jth vari-
able of yi. If for some universally quantified variable yji we
have yji < 0, then this system is automatically satisfied. This
means that, without loss of generality, we can restrict any
universally quantified variable yji to the set {0−∞}. Thus,
the constructed PQII is feasible if and only if

∃x1 ∀y1 ∈ {0−∞} . . . ∃xn ∀yn ∈ {0−∞}
A · x + M · y ≤ b.

is feasible. Therefore, PQIIs are PA-hard. Moreover, just
like UQIP, PQII is a special case of PA. Hence, PQIIs are
PA-complete. 2

6 QIP and the PH
For the sake of completeness, we present the following re-
sults on the relation of QIPs and QIIs with the PH. In this
section, we examine the relation of each level of the PH with
QIPs with limited quantifier alternations.

Theorem 6.1
∀y1 ∈ {l1 − u1} ∃x1 . . . ∀yk ∈ {lk − uk} ∃xk

A · x + B · y ≤ c is Π2·k
P -hard.

Proof: We start with the following restricted form of
Q3SAT.

∀y1 ∃x1 . . . ∀yk ∃xk φ(x,y)

Note that this problem is Π2·k
P -complete. We construct an

instance of QIP as follows:
1. For each vector xi, we add the vector xi and the con-

straints 0 ≤ xi ≤ 1 to the system.
2. For each vector yi, we add the vector yi to the system

with {0− 1} bound in the quantifier string.
3. For each 3CNF clause, ck, in φ, we add a constraint to the

QIP. This constraint depends on the form of the clause.
For example, the clause (y1,¬y2, x3) is represented by
the constraint

y1 + (1− y2) + x3 ≥ 1.



The quantifier string of the constructed QIP instance is of
the form:

∀y1 ∈ {0− 1} ∃x1 . . . ∀yk ∈ {0− 1} ∃xk

If a variable in the Q3SAT instance is given a value of
true, then the value 1 is assigned to the corresponding inte-
ger variable in the QIP. On the other hand, if a variable in the
Q3SAT instance is given a value of false, then the value 0 is
assigned to the corresponding integer variable in the QIP.

First, consider a case where the Q3SAT instance holds.
This means that every clause φk in φ is true, which in turn
means that at least one of the literals in φk is true. Therefore,
one of the variables in the corresponding constraint will take
the value 1. Hence, the corresponding constraint will be triv-
ially satisfied. Since all clauses are satisfied, all constraints
of the corresponding QIP will also be satisfied, thus the QIP
will also hold.

Now consider a case where the Q3SAT instance does not
hold. This means that for every assignment, at least one
clause φk in φ is false, which in turn means that all of its lit-
erals are false. Therefore, the corresponding constraint will
not be satisfied, since all its variables will take the value 0.
Since, for every variable assignment, at least one constraint
of the corresponding QIP will not be satisfied, the QIP will
also not hold. 2

In a similar manner, the following result can be obtained
for QIPs starting with an existential quantifier.
Theorem 6.2
∃x1 ∀y1 ∈ {l1 − u1} . . . ∀yk ∈ {lk − uk} ∃xk+1

A · x + B · y ≤ c is Σ2·k+1
P -hard.

It is easy to obtain results similar to Theorems 6.1 and 6.2
for the unbounded and partially bounded variants of QIP as
well.

7 QII and the PH
Based on the results of Section 6, we can now use the re-
lationship between QIP and QII to establish similar results
for QII and its variants and their relation to each level of the
PH.
Theorem 7.1 ∀y1 ∃x1 . . . ∀yk ∃xk

[C · x + N · y ≤ d→ A · x + M · y ≤ b] is Π2·k
P -hard.

Proof: Consider a QIP instance of the form:

∀y1 ∈ {l1 − u1} ∃x1 . . . ∀yk ∈ {lk − uk} ∃xk

A · x + B · y ≤ c

From Theorem 6.1 we have that this problem is Π2·k
P -hard.

We construct the corresponding QII as follows:
1. For every vector xi of the QIP, we add a vector xi to the

corresponding QII.
2. For every vector yi of the QIP, we add a vector yi to the

corresponding QII.
3. All the constraints in A · x + M · y ≤ b are added to the

RHS of the implication.
4. To represent the bounds on the universally quantified vari-

ables, we add the constraints l ≤ y ≤ u to the LHS of the
implication.

The quantifier string of the constructed QII will have the
following form:

∀y1 ∃x1 . . . ∀yk ∃xk

Thus, the constructed system will be as follows:

∀y1 ∃x1 . . . ∀yk ∃xk [l ≤ y ≤ u→ A · x + M · y ≤ b]

This system is clearly of the form (3). The result follows. 2
The following result on QIIs starting with an existential

quantifier is obtained similarly.

Theorem 7.2 ∃x1 ∀y1 . . . ∃xk ∀yk ∃xk+1

[C · x + N · y ≤ d → A · x + M · y ≤ b] is Σ2·k+1
P -

hard.

We can easily obtain analogous results for the unbounded
and partially bounded variants of QII as well.

8 Conclusion
In this paper, we introduced several variants of QIP and QII
and discussed their computational complexities. We have
shown that QIP over polytopes is PSPACE-complete. Ad-
ditionally, we have shown that partially bounded and un-
bounded variants of QIPs and QIIs are PA-complete. This
is in contrast to the corresponding variations of QLPs and
QLIs, which are in P. Intuitively, this occurs because in the
‘integer” problems there are no implied restrictions to the
values that universal variables may assume. Finally, we have
examined the connections between alternations in the quan-
tifier strings of these problems and levels of the polynomial
hierarchy.

Avenues for future research include establishing the com-
putational complexity of QIP. Furthermore, showing that
each level of the PH can be represented by QIPs with limited
quantifier alternations is an interesting open issue.

A Presburger Arithmetic
The theory of Presburger Arithmetic has the signature:

{0, 1,+,=}

where

(i) 0 and 1 are constants.

(ii) + is a binary function.

(iii) = is a binary predicate.

Its axiom set is the following:

(a) (∀x) ¬(x+ 1) = 0

(b) (∀x) (∀y) [(x+ 1) = (y + 1)]→ (x = y)

(c) (∀x) (x+ 0 = x)

(d) (∀x) (∀y) x+ (y + 1) = (x+ y) + 1

(e) (F [0] ∧ (∀x) (F [x]→ F [x+ 1]))→ (∀y) F [y]
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